A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A nanoscale study of particle friction in a pharmaceutical system. | LitMetric

A nanoscale study of particle friction in a pharmaceutical system.

Int J Pharm

Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.

Published: November 2006

Studies of single particle interactions in dry powder inhaler (DPI) formulations using atomic force microscopy (AFM) have recently grown in popularity. Currently, these experiments are all based on measuring particle adhesion forces. We broaden this approach by presenting a novel AFM friction study of single particles in a pharmaceutical system, to examine forces acting parallel to a surface. The sliding friction signal of lactose particles attached to AFM cantilevers was recorded in lateral force (LF) mode over 5 microm x 5 microm areas on five different surfaces chosen to represent both relevant inter-particle and particle-surface interactions. A ranking of friction forces was obtained as follows: glass approximately equal to zanamivir >zanamivir-magnesium stearate (99.5%/0.5%, w/w) blend approximately equal to magnesium stearate approximately equal to PTFE. The addition of magnesium stearate to the zanamivir surface dominated and significantly reduced the friction (Kruskal-Wallis test, P<0.001). AFM images of the contacting asperities of the lactose particles show changes in contact morphology due to two processes. Firstly the asperity wears flat due to abrasion and secondly small magnesium stearate particles transfer onto the asperity. It is proposed that in combination with AFM particle adhesion measurements, this method could be used to screen new formulations and the effectiveness of tertiary components in modifying carrier-drug interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2006.06.024DOI Listing

Publication Analysis

Top Keywords

pharmaceutical system
8
magnesium stearate
8
friction
5
nanoscale study
4
study particle
4
particle friction
4
friction pharmaceutical
4
system studies
4
studies single
4
single particle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!