We examined the precise distribution of mRNAs for six cloned rat P2Y receptor subtypes, P2Y1, P2Y2, P2Y4, P2Y6, P2Y12, and P2Y14, in the dorsal root ganglion (DRG) and spinal cord by in situ hybridization histochemistry (ISHH) with 35S-labeled riboprobes. In the DRG, P2Y1 and P2Y2 mRNAs were expressed by 15% and 24% of all neurons, respectively. Although each receptor was evenly distributed between neurofilament-positive and -negative neurons, P2Y2 was rather selectively expressed by TrkA-positive neurons. Schwann cells expressed P2Y2 mRNA, and the nonneuronal cells around the DRG neurons, perhaps the satellite cells, expressed P2Y12 and P2Y14 mRNAs. No ISHH signals for P2Y4 or P2Y6 were seen in any cellular components of the DRG. In the spinal cord, P2Y1 and P2Y4 mRNAs were expressed by some of the dorsal horn neurons, whereas the motor neurons in the ventral horn had P2Y4 and P2Y6 mRNAs. In addition, astrocytes in the gray matter had P2Y1 mRNA, and the microglia throughout the spinal cord expressed P2Y12 mRNA. P2Y14 mRNA was weakly expressed by putative microglia. These findings should provide useful information in interpreting pharmacological and electrophysiological studies in this field given the lack of highly selective antagonists for each P2Y receptor subtype.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.21066DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
p2y receptor
12
p2y4 p2y6
12
dorsal root
8
root ganglion
8
p2y1 p2y2
8
p2y12 p2y14
8
drg spinal
8
mrnas expressed
8
cells expressed
8

Similar Publications

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

CXCL-10 in Cerebrospinal Fluid Detects Neuroinflammation in HTLV-1-Associated Myelopathy with High Accuracy.

Viruses

January 2025

Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil.

Background And Objectives: HTLV-1-associated myelopathy (HAM) is a chronic progressive inflammatory disease of the spinal cord. This study assesses the diagnostic accuracy of the neuroinflammatory biomarkers neopterin and cysteine-X-cysteine motif chemokine ligand 10 (CXCL-10) in cerebrospinal fluid (CSF) for HAM.

Methods: CSF samples from 75 patients with neurological disorders-33 with HAM (Group A), 19 HTLV-1-seronegative with other neuroinflammatory diseases (Group B), and 23 HTLV-1-seronegative with non-neuroinflammatory diseases (Group C)-were retrospectively evaluated.

View Article and Find Full Text PDF

The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.

View Article and Find Full Text PDF

: We previously demonstrated that the intranasal administration of cell-penetrating Tat peptide-modified carrier, PEG-PCL-Tat, improves drug delivery to the central nervous system. This study aimed to evaluate the potential of the post-onset intranasal administration of -acetyl-L-cysteine (NAC) combined with PEG-PCL-Tat (NAC/PPT) for neuropathic pain. : Neuropathic pain was induced by partial sciatic nerve ligation (PSNL) in mice.

View Article and Find Full Text PDF

Effects of Spinal Cord Stimulation in Patients with Small Fiber and Associated Comorbidities from Neuropathy After Multiple Etiologies.

J Clin Med

January 2025

Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.

The aim of this study was to evaluate the effects of spinal cord stimulation (SCS) on pain, neuropathic symptoms, and other health-related metrics in patients with chronic painful peripheral neuropathy (PN) from multiple etiologies. A prospective single center observational longitudinal cohort study assessed SCS efficacy from April 2023 to May 2024, with follow-ups at 2, 4, 6, and 12 months in 19 patients suffering from the painful polyneuropathy of diverse etiologies: diabetic (DPN), idiopathic (CIAP), chemotherapy-induced (CIPN), and others. Patients were implanted with a neurostimulator (WaveWriter Alpha, Boston Scientific Corporation, Valencia, CA, USA) and percutaneous leads targeting the lower limbs (T10-T11) and, if necessary, the upper limbs (C4-C7).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!