Multiplexed analyte and oligonucleotide detection on microarrays using several redox enzymes in conjunction with electrochemical detection.

Lab Chip

CombiMatrix Corporation, 6500 Harbour Heights Parkway, Suite 301, Mukilteo, WA 98275, USA.

Published: August 2006

We show that multiple enzyme tags may be used in an immunoassay format or for the detection of sequence-specific DNA on microarrays. The assays may be multiplexed and monitored under separate solution and voltage differences. Thus, the detection method relies on an electrochemical detection format, whereby multiple enzymes can be sensed. In our case we utilize horseradish peroxidase, laccase, and glucose dehydrogenase as enzymes attached to specific antibodies or to streptavidin.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b600126bDOI Listing

Publication Analysis

Top Keywords

electrochemical detection
8
detection
5
multiplexed analyte
4
analyte oligonucleotide
4
oligonucleotide detection
4
detection microarrays
4
microarrays redox
4
redox enzymes
4
enzymes conjunction
4
conjunction electrochemical
4

Similar Publications

The use of 3D-printed electrodes is reported fabricated from in-house conductive filament composed of a mixture of recycled poly (lactic acid) (rPLA), graphite (Gpt), and carbon black (CB) for fast detection of the abused drug ketamine. Firstly, the performance of these electrodes was evaluated in comparison to 3D-printed electrodes produced employing a commercially available conductive filament. After a simple pretreatment step (mechanical polishing), the new 3D-printed electrodes presented better performance than the electrodes produced from commercial filament in relation to peak-to-peak separation of the redox probe [Fe(CN)]/ (130 mV and 759 mV, respectively), charge transfer resistance (R = 1.

View Article and Find Full Text PDF

Operando Photoelectrochemical Surface-Enhanced Raman Spectroscopy: Interfacial Mechanistic Insights and Simultaneous Detection of Patulin.

Anal Chem

January 2025

Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.

View Article and Find Full Text PDF

Levels of CA125 are strongly associated with cervical, pancreatic, bowel and breast cancer. However, the common CA125 detection method has the disadvantages of poor repeatability, high cost, easy to be disturbed and poor stability. In this work, a COF based electrochemical immunosensor was developed for the rapid, sensitive and stable detection of CA125.

View Article and Find Full Text PDF

A novel and sensitive trefoil-structured biosensor based on nanoporous gold for simultaneous determination of microRNA-21 and microRNA-16.

Biosens Bioelectron

December 2024

State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China. Electronic address:

Although electrochemical biosensors have been developed to detect multiple microRNAs (miRNAs) simultaneously through loading different capture probes, high surface-induced perturbation and competition among probes have reduced the detection sensitivity. To address these challenges, a trefoil DNA capture probe (TDCP) was designed for microRNA-21 (miR-21) and microRNA-16 (miR-16) detection simultaneously. The TDCP exhibits a stable structure, low spatial resistance, and integral rigidity, which decreases high surface-induced perturbations and competition to improve the accessibility of the target miRNA.

View Article and Find Full Text PDF

Effect of electrochemical topology on detection sensitivity in MEA assay for drug-induced cardiotoxicity screening.

Biosens Bioelectron

December 2024

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, United States; Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, United States; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, 21218, United States; Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, United States. Electronic address:

Cardiotoxicity remains a major challenge in drug development, accounting for 45% of medication withdrawals due to cardiac ischemia and arrhythmogenicity. To overcome the limitations of traditional multielectrode array (MEA)-based cardiotoxicity assays, we developed a Nafion-coated NanoMEA platform with decoupled reference electrodes, offering enhanced sensitivity for electrophysiological measurements. The 'Decoupled' configuration significantly reduced polarization resistance (Rp) from 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!