Cytoplasmic bacteria may assist in our study of the autophagic pathway. This review highlights the use of Listeria monocytogenes for examining the assembly of autophagic vacuoles in mammalian cells. Inhibiting protein synthesis of cytoplasmic L. monocytogenes results in their being sequestered into the autophagic pathway. Autophagic vacuoles form around the easily identified bacterial particles making the assembly process easy to study using morphological and biochemical methods. L. monocytogenes, which appears to be ideally adapted to life in the cell cytoplasm, does not normally become a target of autophagy. In model systems the bacteria thrive within host cell cytoplasm, indicating the importance of de novo protein synthesis in avoiding the autophagic pathway. This observation indicates an interesting opportunity for identifying the bacterial mechanisms that are mobilized to avoid the autophagic pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/auto.2826 | DOI Listing |
Int Immunopharmacol
January 2025
Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA. Electronic address:
Global healthcare systems are under tremendous strain due to the increasing prevalence of neurodegenerative disorders. Growing data suggested that overconsumption of high-fat/high-carbohydrates diet (HFHCD) is associated with enhanced incidence of metabolic alterations, neurodegeneration, and cognitive dysfunction. Functional foods have gained prominence in curbing metabolic and neurological deficits.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy.
Pompe disease is a neuromuscular disorder caused by a deficiency of the enzyme acid alpha-glucosidase (), which leads to lysosomal glycogen accumulation and progressive development of muscle weakness. Two distinct isoforms have been identified. In the infantile form, the weakness is often severe and leads to motor difficulties from the first few months of life.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy.
Peripherin belongs to heterogeneous class III of intermediate filaments, and it is the only intermediate filament protein selectively expressed in the neurons of the peripheral nervous system. It has been previously discovered that peripherin interacts with proteins important for the endo-lysosomal system and for the transport to late endosomes and lysosomes, such as RAB7A and AP-3, although little is known about its role in the endocytic pathway. Here, we show that peripherin silencing affects lysosomal abundance but also positioning, causing the redistribution of lysosomes from the perinuclear area to the cell periphery.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
The aim of this study was to investigate the inhibitory effect of nintedanib (BIBF) on glioblastoma (GBM) cells and its mechanism of action and to optimize a drug delivery strategy to overcome the limitations posed by the blood-brain barrier (BBB). We analyzed the inhibition of GBM cell lines following BIBF treatment and explored its effect on the autophagy pathway. The cytotoxicity of BIBF was assessed using the CCK-8 assay, and further techniques such as transmission electron microscopy, Western blotting (WB), and flow cytometry were employed to demonstrate that BIBF could block the autophagic pathway by inhibiting the fusion of autophagosomes and lysosomes, ultimately limiting the proliferation of GBM cells.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy.
Cannabinoids include both endogenous endocannabinoids and exogenous phytocannabinoids, such as cannabidiol (CBD), and have potential as therapeutic agents in cancer treatment due to their selective anticancer activities. CBD exhibits both antioxidant and pro-oxidant effects depending on its concentration and cell types. These properties allow CBD to influence oxidative stress responses and potentially enhance the efficacy of antitumor therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!