C. elegans knockouts in ubiquinone biosynthesis genes result in different phenotypes during larval development.

Biofactors

Centro Andaluz de Biología del Desarrollo, Departamento de Ciencias Ambientales, Universidad Pablo de Olavide, Ctra. Utrera, Sevilla, Spain.

Published: October 2006

Ubiquinone is an essential molecule in aerobic organisms to achieve both, ATP synthesis and antioxidant defence. Mutants in genes responsible of ubiquinone biosynthesis lead to non-respiring petite yeast. In C. elegans, coq-7/clk-1 but not coq-3 mutants live longer than wild type showing a 'slowed' phenotype. In this paper we demonstrate that absence in ubiquinone in coq-1, coq-2 or coq-8 mutants lead to larval development arrest, slowed pharyngeal pumping, eventual paralysis and cell death. All these features emerge during larval development, whereas embryo development appeared similar to that of wild type individuals. Dietary coenzyme Q did not restore any of the alterations found in these coq mutants. These phenomena suggest that coenzyme Q mutants unable to synthesize this molecule develop a deleterious phenotype leading to lethality. On the contrary, phenotype of C. elegans coq-7/clk-1 mutants may be a unique phenotype than can not generalize to mutants in ubiquinone biosynthesis. This particular phenotype may not be based on the absence of endogenous coenzyme Q, but to the simultaneous presence of dietary coenzyme Q and the its biosynthesis intermediate demethoxy-coenzyme Q.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biof.5520250104DOI Listing

Publication Analysis

Top Keywords

ubiquinone biosynthesis
12
larval development
12
elegans coq-7/clk-1
8
wild type
8
dietary coenzyme
8
mutants
7
ubiquinone
5
phenotype
5
elegans knockouts
4
knockouts ubiquinone
4

Similar Publications

Numerous studies reported about potential effects of L-carnosine in regulation of tumor growth and metabolism. We evaluated the effects of different concentrations of L-carnosine from supplement on mitochondrial respiratory chain complexes of human embryo lung fibroblasts (MRC-5) and human breast cancer cells (MCF-7), with different energy pathways. Also, we analyzed the proliferation index and expression of various markers of oxidative stress.

View Article and Find Full Text PDF

Introduction: Coenzyme Q10 (CoQ10) is a fat-soluble vitamin-like quinone. The plasma levels of CoQ10 are reduced in patients with chronic kidney disease (CKD). CoQ10 supplementation can improve mitochondrial function and decrease oxidative stress in these patients.

View Article and Find Full Text PDF

Fertility disorders are a worldwide problem affecting 8-12% of the population, with the male factor substantially contributing to about 40-50% of all infertility cases. Mitochondria, crucial organelles for cellular viability, play a pivotal role in the processes of spermatogenesis and significantly affect sperm quality and their fertilizing ability. Mitochondrial oxidative phosphorylation (OXPHOS) dysfunction, reduced energy supply for sperm, reduced endogenous coenzyme Q (CoQ) levels, and oxidative stress are among the main factors that contribute to male infertility.

View Article and Find Full Text PDF

Coenzyme Q10 (CoQ10) plays a crucial role in facilitating electron transport during oxidative phosphorylation, thus contributing to cellular energy production. Statin treatment causes a decrease in CoQ10 levels in muscle tissue as well as in serum, which may contribute to the musculoskeletal side effects. Therefore, we aimed to assess the effect of newly initiated statin treatment on serum CoQ10 levels after acute ST-elevation myocardial infarction (STEMI) and the correlation of CoQ10 levels with key biomarkers of subclinical or clinically overt myopathy.

View Article and Find Full Text PDF

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) protein is located in the mitochondria and can regulate cell proliferation. Some studies have shown that the high NDUFA4L2 expression is linked with poor prognosis and cancer progression in various patients with cancers. However, the correlation between NDUFA4L2 and pan-cancer is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!