Objective: T-cadherin (T-cad) is an atypical GPI-anchored member of the cadherin superfamily. In vascular tissue, T-cad expression is increased during atherosclerosis, restenosis, and tumor neovascularization. In vitro, overexpression and/or homophilic ligation of T-cad on endothelial cells (ECs) facilitates migration, proliferation, and survival. This study investigated T-cad effects on angiogenesis.
Methods And Results: In vitro, T-cad homophilic ligation induced arrangement of ECs into a capillary-like network in a 2-dimensional model of EC differentiation and stimulated in-gel endothelial sprout outgrowth in an EC spheroid model and a modified Nicosia tissue assay. Sprouting from spheroids composed of adenoviral-infected T-cad overexpressing ECs or T-cad siRNA transfected ECs were significantly increased or reduced, respectively. In vivo, T-cad potentiated VEGF effects on neovascularization in a model of myoblast-mediated gene transfer to mouse skeletal muscle; vessel caliber after co-delivery of T-cad and VEGF was significantly greater than after delivery of VEGF alone.
Conclusions: We unequivocally identify T-cad as a novel modulator of angiogenesis and suggest that this molecule can be exploited as a target for modulation of therapeutic angiogenesis, as well as for prevention of pathological conditions associated with abnormal neovascularization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.ATV.0000238356.20565.92 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!