Objective: Heparin-induced thrombocytopenia (HIT) is a prothrombotic drug reaction caused by antibodies that recognize positively charged platelet factor 4 (PF4), bound to the polyanion, heparin. The resulting immune complexes activate platelets. Unfractionated heparin (UFH) causes HIT more frequently than low-molecular-weight heparin (LMWH), whereas the smallest heparin-like molecule (the pentasaccharide, fondaparinux), induces anti-PF4/heparin antibodies as frequently as LMWH, but without exhibiting cross-reactivity with these antibodies. To better understand these findings, we analyzed the molecular structure of the complexes formed between PF4 and UFH, LMWH, or fondaparinux.

Methods And Results: By atomic force microscopy and photon correlation spectroscopy, we show that with any of the 3 polyanions, but in the order, UFH>LMWH>>fondaparinux--PF4 forms clusters in which PF4 tetramers become closely apposed, and to which anti-PF4/heparin antibodies bind. By immunoassay, HIT antibodies bind strongly to PF4/H/PF4 complexes, but only weakly to single PF4/heparin molecules.

Conclusions: HIT antigens are formed when charge neutralization by polyanion allows positively charged PF4 tetramers to undergo close approximation. Whereas such a model could explain why all 3 polyanions form antibodies with similar specificities, the striking differences in the relative size and amount of complexes formed likely correspond to the observed differences in immunogenicity (UFH>LMWH approximately fondaparinux) and clinically relevant cross-reactivity (UFH>LMWH>>fondaparinux).

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.ATV.0000238350.89477.88DOI Listing

Publication Analysis

Top Keywords

close approximation
8
platelet factor
8
charge neutralization
8
hit antibodies
8
positively charged
8
anti-pf4/heparin antibodies
8
complexes formed
8
pf4 tetramers
8
antibodies bind
8
antibodies
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!