Enhanced VWF biosynthesis and elevated plasma VWF due to a natural variant in the murine Vwf gene.

Blood

Howard Hughes Medical Institute, University of Michigan, 210 Washtenaw, Life Sciences Institute, Rm 5028, Ann Arbor, MI 48109, USA.

Published: November 2006

Both genetic and environmental influences contribute to the wide variation in plasma von Willebrand factor (VWF) levels observed in humans. Inbred mouse strains also have highly variable plasma VWF levels, providing a convenient model in which to study genetic modifiers of VWF. Previously, we identified a major modifier of VWF levels in the mouse (Mvwf1) as a regulatory mutation in murine Galgt2. We now report the identification of an additional murine VWF modifier (Mvwf2). Mvwf2 accounts for approximately 16% of the 8-fold plasma VWF variation (or approximately 25% of the genetic variation) observed between the A/J and CASA/RkJ strains and maps to the murine Vwf gene itself. Twenty SNPs were identified within the coding regions of the A/J and CASA/RkJ Vwf alleles, and in vitro analysis of recombinant VWF demonstrated that a single SNP (+7970G>A) and the associated nonsynonymous amino acid change (R2657Q) confers a significant increase in VWF biosynthesis from the CASA/RkJ Vwf allele. This change appears to represent a unique gain of function that likely explains the mechanism of Mvwf2 in vivo. The identification of a natural Vwf gene variant among inbred mice affecting biosynthesis suggests that similar genetic variation may contribute to the wide range of VWF levels observed in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895519PMC
http://dx.doi.org/10.1182/blood-2006-04-014688DOI Listing

Publication Analysis

Top Keywords

vwf levels
16
vwf
15
plasma vwf
12
murine vwf
12
vwf gene
12
vwf biosynthesis
8
contribute wide
8
levels observed
8
observed humans
8
genetic variation
8

Similar Publications

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

The future of siRNA-mediated approaches to treat von Willebrand disease.

Expert Rev Hematol

January 2025

Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.

Introduction: The clinical management of the inherited bleeding disorder von Willebrand disease (VWD) focuses on normalizing circulating levels of von Willebrand factor (VWF) and factor VIII (FVIII) to prevent or control bleeding events. The heterogeneous nature of VWD, however, complicates effective disease management and development of universal treatment guidelines.

Areas Covered: The current treatment modalities of VWD and their limitations are described and why this prompts the development of new treatment approaches.

View Article and Find Full Text PDF

Circadian misalignment, due to shiftwork and/or individual chronotype and/or social jetlag (SJL), quantified as the difference between internal and social timing, may contribute to cardiovascular disease. Markers of endothelial dysfunction and activation of the coagulation system may predict cardiovascular pathology. The present study aim was to investigate the effects of shift work, SJL, and chronotype on endothelial function and coagulation parameters.

View Article and Find Full Text PDF

Desmopressin (DDAVP) can be used to prevent or stop bleeding. However, large inter-individual variability is observed in DDAVP response and determinants are largely unknown. In this systematic review and meta-analysis we aim to identify the response to DDAVP, and the factors that determine DDAVP response in patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!