A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. | LitMetric

Little is known about the assembly and turnover of cellulose synthase complexes commonly called rosettes. Recent work indicates that rosette assembly could involve the dimerization of CesA (cellulose synthase catalytic subunit) proteins regulated by the redox state of the CesA zinc-binding domain (ZnBD). Several studies in the 1980s led to the suggestion that synthase complexes may have very short half-lives in vivo, but no recent work has directly addressed this issue. In the present work, we show that the half-life of cotton fiber GhCesA1 protein is <30 min in vivo, far less than the average membrane protein. We also show that the reduced monomer of GhCesA1 ZnBD is rapidly degraded when exposed to cotton fiber extracts, whereas the oxidized dimer is resistant to degradation. Low rates of degradation activity were detected in vitro by using extracts from fibers harvested during primary cell-wall formation, but activity increased markedly during transition to secondary cell-wall synthesis. In vitro degradation of reduced GhCesA1 ZnBD is inhibited by proteosome inhibitor MG132 and also by E64 and EGTA, suggesting that proteolysis is initiated by cysteine protease activity rather than the proteosome. We used a yeast two-hybrid system to identify a putative cotton fiber metallothionein and to confirm it as a protein that could interact with the GhCesA1 ZnBD. A model is proposed wherein active cellulose synthase complexes contain CesA proteins in dimerized form, and turnover and degradation of the complexes are mediated through reductive zinc insertion by metallothionein and subsequent proteolysis involving a cysteine protease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1567717PMC
http://dx.doi.org/10.1073/pnas.0605098103DOI Listing

Publication Analysis

Top Keywords

cellulose synthase
12
cotton fiber
8
zinc-binding domain
8
synthase complexes
8
fiber zinc-binding
4
domain cellulose
4
synthase
4
synthase gossypium
4
gossypium hirsutum
4
hirsutum displays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!