A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel unsupervised feature filtering of biological data. | LitMetric

Novel unsupervised feature filtering of biological data.

Bioinformatics

School of Computer Science and Engineering, The Hebrew University of Jerusalem, 91904 Israel.

Published: July 2006

Motivation: Many methods have been developed for selecting small informative feature subsets in large noisy data. However, unsupervised methods are scarce. Examples are using the variance of data collected for each feature, or the projection of the feature on the first principal component. We propose a novel unsupervised criterion, based on SVD-entropy, selecting a feature according to its contribution to the entropy (CE) calculated on a leave-one-out basis. This can be implemented in four ways: simple ranking according to CE values (SR); forward selection by accumulating features according to which set produces highest entropy (FS1); forward selection by accumulating features through the choice of the best CE out of the remaining ones (FS2); backward elimination (BE) of features with the lowest CE.

Results: We apply our methods to different benchmarks. In each case we evaluate the success of clustering the data in the selected feature spaces, by measuring Jaccard scores with respect to known classifications. We demonstrate that feature filtering according to CE outperforms the variance method and gene-shaving. There are cases where the analysis, based on a small set of selected features, outperforms the best score reported when all information was used. Our method calls for an optimal size of the relevant feature set. This turns out to be just a few percents of the number of genes in the two Leukemia datasets that we have analyzed. Moreover, the most favored selected genes turn out to have significant GO enrichment in relevant cellular processes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btl214DOI Listing

Publication Analysis

Top Keywords

novel unsupervised
8
feature
8
feature filtering
8
forward selection
8
selection accumulating
8
accumulating features
8
unsupervised feature
4
filtering biological
4
data
4
biological data
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!