A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. | LitMetric

Motivation: Regulation of gene expression by a transcription factor requires physical interaction between the factor and the DNA, which can be described by a statistical mechanical model. Based on this model, we developed the MatrixREDUCE algorithm, which uses genome-wide occupancy data for a transcription factor (e.g. ChIP-chip) and associated nucleotide sequences to discover the sequence-specific binding affinity of the transcription factor. Advantages of our approach are that the information for all probes on the microarray is efficiently utilized because there is no need to delineate "bound" and "unbound" sequences, and that, unlike information content-based methods, it does not require a background sequence model.

Results: We validated the performance of MatrixREDUCE by inferring the sequence-specific binding affinities for several transcription factors in S. cerevisiae and comparing the results with three other independent sources of transcription factor sequence-specific affinity information: (i) experimental measurement of transcription factor binding affinities for specific oligonucleotides, (ii) reporter gene assays for promoters with systematically mutated binding sites, and (iii) relative binding affinities obtained by modeling transcription factor-DNA interactions based on co-crystal structures of transcription factors bound to DNA substrates. We show that transcription factor binding affinities inferred by MatrixREDUCE are in good agreement with all three validating methods.

Availability: MatrixREDUCE source code is freely available for non-commercial use at http://www.bussemakerlab.org/. The software runs on Linux, Unix, and Mac OS X.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btl223DOI Listing

Publication Analysis

Top Keywords

transcription factor
28
binding affinities
16
transcription
10
statistical mechanical
8
factor
8
occupancy data
8
sequence-specific binding
8
transcription factors
8
factor binding
8
binding
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!