Background: Calcium phosphate cement (CPC) hardens in situ to form hydroxyapatite and has been used in dental and craniofacial restorative applications. However, when CPC was used in periodontal osseous repair, tooth mobility resulted in the fracture and exfoliation of the brittle CPC implant. The objective of the authors' study was to develop a strong and nonrigid CPC to provide compliance for tooth mobility without fracturing the implant.
Methods: The authors used tetracalcium phosphate, dicalcium phosphate anhydrous and biopolymer chitosan to develop a strong and nonrigid CPC. They used a powder:liquid ratio of 2:1, compared with the 1:1 ratio of a previously developed nonrigid CPC control. Specimens were characterized using a flexural test, scanning electron microscopy and powder X-ray diffraction.
Results: After 28 days of immersion, the new cement had a flexural strength (mean +/- standard deviation; n = 6) of 5.2 +/- 1.0 megapascals, higher than 1.8 +/- 1.5 MPa for the control (P < .05) and overlapping the reported strengths of sintered hydroxyapatite implants and cancellous bone. This cement showed a high ductility with a strain at peak load of 6.5 +/- 1.3 percent, compared with 4.4 +/- 1.9 percent for the control; both were 20-fold higher than the 0.2 percent of the conventional CPC. Nanosized hydroxyapatite crystals, similar to those in teeth and bones, were formed in the cements.
Conclusions: The new nonrigid cement, containing nanohydroxyapatite crystals, possessed a high ductility and superior fracture resistance. This strong, tough and nonrigid CPC may be useful in periodontal repair to provide compliance for tooth mobility without fracture.
Clinical Implications: The results of this study may yield the first self-hardening and nonrigid hydroxyapatite composite with high strength and durability and large deformation capability to be useful in the regeneration of periodontal osseous defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14219/jada.archive.2006.0353 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!