Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Kinase inhibitors that bind to the ATP cleft can be broadly classified into two groups: those that bind exclusively to the ATP site with the kinase assuming a conformation otherwise conducive to phosphotransfer (type I), and those that exploit a hydrophobic site immediately adjacent to the ATP pocket made accessible by a conformational rearrangement of the activation loop (type II). To date, all type II inhibitors were discovered by using structure-activity-guided optimization strategies. Here, we describe a general pharmacophore model of type II inhibition that enables a rational "hybrid-design" approach whereby a 3-trifluoromethylbenzamide functionality is appended to four distinct type I scaffolds in order to convert them into their corresponding type II counterparts. We demonstrate that the designed compounds function as type II inhibitors by using biochemical and cellular kinase assays and by cocrystallography with Abl.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chembiol.2006.05.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!