Developing live Shigella vaccines using lambda Red recombineering.

FEMS Immunol Med Microbiol

Department of Enteric Infections, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.

Published: August 2006

Live attenuated Shigella vaccines have shown promise in inducing protective immune responses in human clinical trials and as carriers of heterologous antigens from other mucosal pathogens. In the past, construction of Shigella vaccine strains relied on classical allelic exchange systems to genetically engineer the bacterial genome. These systems require extensive in vitro engineering of long homologous sequences to create recombinant replication-defective plasmids or phage. Alternatively, the lambda red recombination system from bacteriophage facilitates recombination with as little as 40 bp of homologous DNA. The process, referred to as recombineering, typically uses an inducible lambda red operon on a temperature-sensitive plasmid and optimal transformation conditions to integrate linear antibiotic resistance cassettes flanked by homologous sequences into a bacterial genome. Recent advances in recombineering have enabled modification of genomic DNA from bacterial pathogens including Salmonella, Yersinia, enteropathogenic Escherichia coli, or enterohemorrhagic E. coli and Shigella. These advances in recombineering have been used to systematically delete virulence-associated genes from Shigella, creating a number of isogenic strains from multiple Shigella serotypes. These strains have been characterized for attenuation using both in vivo and in vitro assays. Based on this data, prototypic Shigella vaccine strains containing multiple deletions in virulence-associated genes have been generated.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-695X.2006.00118.xDOI Listing

Publication Analysis

Top Keywords

lambda red
12
shigella vaccines
8
shigella vaccine
8
vaccine strains
8
bacterial genome
8
homologous sequences
8
advances recombineering
8
virulence-associated genes
8
strains multiple
8
shigella
7

Similar Publications

Bright biocompatible fluorescent imaging dyes with red to near-infrared (NIR) emissions are ideal candidates for fluorescence microscopy applications. Pyrene-benzothiazolium hemicyanine dyes are a new class of lysosome-specific probes reported on recently. In this work, we conduct a detailed implementation study for a pyrene-benzothiazolium derivative, BTP, to explore its potential imaging applications in fluorescence microscopy.

View Article and Find Full Text PDF

RED-E-Function-Based Equilibrium Parameter Finder: Finding the Best Restraint Parameters in Absolute Binding Free Energy Calculations.

J Phys Chem Lett

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.

Free energy perturbation (FEP)-based absolute binding free energy (ABFE) calculations have emerged as a powerful tool for the accurate prediction of ligand-protein binding affinities in drug discovery. The restraint addition is crucial in FEP-ABFE calculations; however, due to the non-orthogonal couplings between the restrained degrees of freedom, it typically requires numerous λ windows to ensure the phase-space overlap during restraint addition. This study introduces the RED-E-function-based equilibrium parameter finder (REPF), a novel method that relies on harmonic restraints to optimize the equilibrium values in restraints, enhancing phase-space overlap and improving the convergence of the restraint addition.

View Article and Find Full Text PDF

A 67-year-old male presented with plaques around the orbit and ecchymosis on the neck and back of hands for 2 years. Physical examination showed seborrheic-keratosis-like plaques around the orbit, ecchymosis on the neck and back of hands, as well as nail dystrophy. Serum λ light chain was positive.

View Article and Find Full Text PDF

Pirquitasite AgZnSnS (AZTS) nanocrystals (NCs) are emergent, lead-free emissive materials in the coinage chalcogenide family with applications in optoelectronic technologies. Like many multinary nanomaterials, their phase-pure synthesis is complicated by the generation of impurities, e.g.

View Article and Find Full Text PDF

Cellular and Intravital Nucleus Imaging by a D-π-A Type of Red-Emitting Two-Photon Fluorescent Probe.

Anal Chem

December 2024

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China.

The advancement in fluorescent probe technology for visualizing nuclear morphology and nucleic acid distribution in live cells and has attracted considerable interest within the biomedical research community, as it offers invaluable insights into cellular dynamics across various physiological and pathological contexts. In this study, we present a novel two-photon nucleus-imaging fluorescent probe called Nu-red, which is a typical donor(D)-π-acceptor(A) rotor composed of the donor (dihydroquinoline) and acceptor (pyridiniumylpentadienitrile) parts linked by a single bond. This probe offers several advantages, including long-wavelength excitation and emission (λ/λ = 610/664 nm), favorable quantum yields (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!