A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Primary semiclassical kinetic hydrogen isotope effects in identity carbon-to-carbon proton- and hydride-transfer reactions, an ab initio and DFT computational study. | LitMetric

Enthalpies of activation, transition state (ts) geometries, and primary semiclassical (without tunneling) kinetic isotope effects (KIEs) have been calculated for eleven bimolecular identity proton-transfer reactions, four intramolecular proton transfers, four nonidentity proton-transfer reactions, eleven identity hydride transfers, and two 1,2-intramolecular hydride shifts at the HF/6-311+G, MP2/6-311+G, and B3LYP/6-311++G levels. We find the KIEs to be systematically smaller for hydride transfers than for proton transfers. This outcome is not the result of "bent" transition states, although extreme bending can lower the KIE. Rather, it is a consequence of generally greater total bonding in a hydride-transfer ts than in a proton-transfer ts, most prominently manifested as a reduced contribution from the zero-point vibrational energy difference between reactant and transition states (the DeltaZPVE factor) for hydride transfers relative to proton transfers. This and other differences between proton and hydride transfers are rationalized by modeling the central .C...H...C unit of a proton-transfer ts as a 4-electron, 3-center (4-e 3-c) system and the same unit of a hydride-transfer ts as a 2-e 3-c system. Inclusion of tunneling is most likely to magnify the observed differences between proton-transfer and hydride-transfer KIEs, leaving our qualitative conclusions unchanged.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo0606296DOI Listing

Publication Analysis

Top Keywords

hydride transfers
16
proton transfers
12
primary semiclassical
8
isotope effects
8
proton-transfer reactions
8
transition states
8
3-c system
8
transfers
7
proton-transfer
5
hydride
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!