Because tissues from all three germ layers contribute to the pharyngeal arches, it is not surprising that all major signaling pathways are involved in their development. We focus on the role of retinoic acid (RA) signaling because it has been recognized for quite some time that alterations in this pathway lead to craniofacial malformations. Several studies exist that describe phenotypes observed upon RA perturbations in pharyngeal arch development; however, these studies did not address whether RA plays multiple roles at distinct time points during development. Here, we report the resulting phenotypes in the hindbrain, the neural crest-derived tissues, and the pharyngeal endoderm when RA synthesis is disrupted during zebrafish gastrulation and pharyngeal arch morphogenesis. Our results demonstrate that RA is required for the post-gastrulation morphogenesis and segmentation of endodermal pouches, and that loss of RA does not affect the length of the pharyngeal ectoderm or medial endoderm along the anterior-posterior axis. We also provide evidence that RA is not required for the specification of pharyngeal pouch endoderm and that the pharyngeal endoderm consists of at least two different cell populations, of which the pouch endoderm is sensitive to RA and the more medial pharyngeal endoderm is not. These results demonstrate that the developmental processes underlying pharyngeal arch defects differ depending on when RA signaling is disturbed during development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.20905 | DOI Listing |
Differentiation
December 2024
University of Louisville, School of Medicine, Department of Biochemistry and Molecular Genetics, 580 S Preston St, Louisville, KY, 40202, USA. Electronic address:
Retinoic Acid (RA) is the key signaling molecule during embryonic development with the RA pathway playing multiple roles in throughout development. Previous work has shown RA signaling to be key in development of the craniofacial skeleton. RA signaling is driven by RA binding to the nuclear transcription factors, retinoic acid receptor (RAR) and retinoic X receptor (RXR).
View Article and Find Full Text PDFTissue Cell
February 2025
Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan.
Glial cells missing 2 (GCM2) has been identified as an essential factor for parathyroid differentiation, and GCM2 silencing in parathyroid cells decreases calcium-sensing receptor (CaSR) expression. However, the role of GCM2 in parathyroid differentiation from induced pluripotent stem cells (iPSCs) is unclear. Here, we investigated the role of GCM2 in parathyroid differentiation from iPSCs using the Tet-On 3 G system.
View Article and Find Full Text PDFCell Rep
December 2024
Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; GIMM-Gulbenkian Institute for Molecular Medicine, 1649-028 Lisboa, Portugal. Electronic address:
Unlabelled: Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of neurological defects and craniofacial malformations, associated with ethanol teratogenicity. While there is growing evidence for a genetic component to FASD, little is known of the genes underlying these ethanol-induced defects. Along with timing and dosage, genetic predispositions may help explain the variability within FASD.
View Article and Find Full Text PDFReprod Toxicol
January 2025
University of Louisville, School of Medicine, Department of Biochemistry and Molecular Genetics, 319 Abraham Flexner Way, Louisville, KY 40202, USA. Electronic address:
Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of neurological defects and craniofacial malformations, associated with ethanol teratogenicity. While there is growing evidence for a genetic component to FASD, little is known of the genes underlying these ethanol-induced defects. Along with timing and dosage, genetic predispositions may help explain the variability within FASD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!