The human papillomavirus (HPV) virus-like particles (VLPs) produced by recombinant expression systems are promising candidate vaccine antigens for prevention of cervical cancers as well as genital warts. However, expression of HPV type 6, 11, and 16 L1 proteins in Saccharomyces cerevisiae yielded irregularly shaped, broadly distributed VLPs smaller in size (30-50 nm) than expected (60 nm). In this study, we demonstrate that these HPV VLPs can be disassembled into the constituent capsomers (L1 pentamers) by incubation at low ionic strength and elevated pH in the presence of relatively low concentration of reducing agents. Following the removal of reducing agents, lowering of pH and increasing of ionic strength, the capsomers spontaneously reassembled into homogenous, 60-nm VLPs characterized by significantly enhanced structural stability and improved immunogenicity. In order to achieve quantitative recovery of HPV VLPs, the disassembly/reassembly process was further optimized by use of high ionic strength (>0.5 M sodium chloride) to prevent aggregation of VLPs. The reassembled VLPs possess an architectural structure very similar to that of the natural HPV virus particles. This development illustrates how the natural, in vivo mechanisms facilitating cell entry and virus replication can be utilized to achieve an optimal, in vitro assembly state of yeast-expressed HPV VLPs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.20696DOI Listing

Publication Analysis

Top Keywords

hpv vlps
16
ionic strength
12
vlps
9
human papillomavirus
8
virus-like particles
8
reducing agents
8
hpv
7
disassembly reassembly
4
reassembly yeast-derived
4
yeast-derived recombinant
4

Similar Publications

Immune profile diversity is achieved with synthetic TLR4 agonists combined with the RG1-VLP vaccine in mice.

Vaccine

January 2025

Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA. Electronic address:

The TLR4 (Toll-like receptor 4)-activating agonist MPLA (monophosphoryl lipid A) is a key component of the adjuvant systems AS01 and AS04, utilized in marketed preventive vaccines for several infectious pathogens. As MPLA is a biologically-derived product containing a mixture of several lipid A congeners with a 4' phosphoryl group and varying numbers of acyl chains with distinct activities, extensive efforts to refine its production and immunogenicity are ongoing; notably, the development of the BECC (Bacterial Enzymatic Combinatorial Chemistry) system in which bacteria express lipid A-modifying enzymes to produce a panoply of lipid A congeners. In an effort to characterize the adjuvant activity of these lipid A congeners, we compared biologically-derived and synthetic versions of BECC470 and BECC438 for adjuvant activity in BALB/c mice vaccinated with the HPV (Human papilloma virus) VLP-based vaccine, RG1-VLP.

View Article and Find Full Text PDF

Cervical cancer is the fourth most prevalent cancer among women globally, with Thai women ranking it as the third most common. At present, a prophylactic vaccine, containing virus-like particles (VLPs) of HPV L1 capsid protein, is widely recognized as one of the major prevention strategies for cervical cancer. Unfortunately, due to a low cross-protection among subtypes, protection against each HPV subtype requires vaccination with VLPs of that specific subtype.

View Article and Find Full Text PDF

A single-injection vaccine providing protection against two HPV types.

J Mater Chem B

November 2024

State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China.

Prophylactic human papillomavirus (HPV) vaccines against cervical cancer were successfully developed; however, challenges such as high cost and low compliance still remain to be overcome. In addition, because many HPV types can cause cervical cancer, antigens of multiple HPV types are needed to achieve broad protection. In this study, a bivalent single-injection HPV vaccine was designed in which virus-like particles (VLPs) of HPV 16 L1 and HPV 18 L1 were used as antigens.

View Article and Find Full Text PDF

Characterization of a triple-type chimeric vaccine against human papillomavirus types 18, 45, and 59.

Vaccine

October 2024

State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China. Electronic address:

Persistent infection with high-risk human papillomavirus (HPV) types can lead to the development of cancer in HPV-infected tissues, including the cervix, oropharynx, anus, penis, vagina, and vulva. While current HPV vaccines cover approximately 90 % of cervical cancers, nearly 10 % of cases associated with HPV types not included in the vaccines remain unaddressed, notably HPV59. This study describes the development of a chimeric virus-like particle (VLP) targeting HPV18/45/59, proposed as a vaccine candidate for high-risk HPV type (HPV59) currently lacking commercial vaccines.

View Article and Find Full Text PDF

Engineering of Recombinant Human Papillomavirus 16 L1 Protein for Incorporation with -Azido--Phenylalanine.

J Microbiol Biotechnol

September 2024

Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea.

Human papillomavirus (HPV) L1 capsid protein were produced in several host systems, but few studies have focused on enhancing the properties of the L1 protein. In this study, we aimed to produce recombinant Human papillomavirus (HPV) L1 capsid protein containing -azido--phenylalanine (pAzF) in . First, we expressed the maltose-binding protein (MBP)-fused HPV16 L1, and 5 residues in HPV16 L1 protein were selected by the in silico modeling for amber codon substitution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!