Compelling evidence shows that intracellular free magnesium [Mg(2+)](i) may be a critical regulator of cell activity in eukaryotes. However, membrane transport mechanisms mediating Mg(2+) influx in mammalian cells are poorly understood. Here, we show that mechanosensitive (MS) cationic channels activated by stretch are permeable for Mg(2+) ions at different extracellular concentrations including physiological ones. Single-channel currents were recorded from cell-attached and inside-out patches on K562 leukaemia cells at various concentrations of MgCl(2) when Mg(2+) was the only available carrier of inward currents. At 2 mM Mg(2+), inward mechanogated currents representing Mg(2+) influx through MS channels corresponded to the unitary conductance of about 5 pS. At higher Mg(2+) levels, only slight increase of single-channel currents and conductance occurred, implying that Mg(2+) permeation through MS channels is characterized by strong saturation. At 20 and 90 mM Mg(2+), mean conductance values for inward currents carried by Mg(2+) were rather similar, being equal to 6.8 +/- 0.5 and 6.4 +/- 0.5 pS, respectively. The estimation of the channel-selective permeability according to constant field equation is obviously limited due to saturation effects. We conclude that the detection of single currents is the main evidence for Mg(2+) permeation through membrane channels activated by stretch. Our single-current measurements document Mg(2+) influx through MS channels in the plasma membrane of leukaemia cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cr.7310084DOI Listing

Publication Analysis

Top Keywords

mg2+ influx
12
mg2+
11
single-current measurements
8
channels activated
8
activated stretch
8
single-channel currents
8
leukaemia cells
8
influx channels
8
mg2+ permeation
8
channels
6

Similar Publications

Senescent bone tissue displays a pathological imbalance characterized by decreased angiogenesis, disrupted bioelectric signaling, ion dysregulation, and reduced stem cell differentiation. Once bone defects occur, this pathological imbalance makes them difficult to repair. An innovative synergistic therapeutic strategy is utilized to reverse these pathological imbalances via a conductive hydrogel doped with magnesium ion (Mg)-modified black phosphorus (BP).

View Article and Find Full Text PDF

Monitoring dynamic neurochemical signals in the brain of free-moving animals remains great challenging in biocompatibility and direct implantation capability of current electrodes. Here we created a self-supporting polymer-based flexible microelectrode (rGPF) with sufficient bending stiffness for direct brain implantation without extra devices, but demonstrating low Young's modulus with remarkable biocompatibility and minimal position shifts. Meanwhile, screening by density functional theory (DFT) calculation, we designed and synthesized specific ligands targeting Mg and Ca, and constructed Mg-E and Ca-E sensors with high selectivity, good reversibility, and fast response time, successfully monitoring Mg and Ca in vivo up to 90 days.

View Article and Find Full Text PDF

Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators.

View Article and Find Full Text PDF

Intracellular metal ion-based chemistry for programmed cell death.

Chem Soc Rev

January 2025

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.

Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD).

View Article and Find Full Text PDF

Background: TRPC5 proteins form plasma membrane cation channels and are expressed in the nervous and cardiovascular systems. TRPC5 activation leads to cell depolarization and increases neuronal excitability, whereas a homologous TRPC1 inhibits TRPC5 function via heteromerization. The mechanism underlying the inhibitory effect of TRPC1 in TRPC5/TRPC1 heteromers remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!