Background: Activation of the nuclear factor kappaB (NF-kappaB) system is a major event in acute and chronic inflammatory processes. NF-kappaB cascades are comprised of IkappaB kinases, IkappaBs and NF-kappaB dimers. Little is known of the individual roles of these proteins in organ specific inflammation. The aim of the present study was to analyse the consequences of ectopic IkappaB kinase-2 (IKK2) activation in the pancreas of mice.

Methods: Transgenic mice were generated using an inducible genetic system (tet system) to conditionally overexpress a gain of function mutant of IKK2 (tetO-IKK2-EE) in the pancreas. To achieve transgene expression in the pancreas, these animals were crossed with CMV-rtTA mice that are known to express the rtTA protein in the pancreas.

Results: In these double transgenic animals, doxycycline treatment induced expression of IKK2-EE (IKK2(CA)) in pancreatic acinar cells resulting in moderate activation of the IkappaB kinase complex, as measured by the immune complex kinase assay, and up to 200-fold activation of the transgene expression cassette, as detected by luciferase assay. IKK2(CA) expression in the pancreas had a mosaic appearance. Ectopic IKK2(CA) mostly activated the classical NF-kappaB pathway. The activation level of the NF-kappaB cascade induced by IKK2(CA) was considerably lower compared with that observed after supramaximal caerulein stimulation but still led to the formation of leucocyte infiltrates first observed after 4 weeks of doxycycline stimulation with a maximum after 8-12 weeks. The infiltrates were mainly composed of B lymphocytes and macrophages. Increased mRNA levels of tumour necrosis factor alpha and RANTES were detected in pancreatic acinar cells. However, only minor damage to pancreatic tissue was observed. A combination of supramaximal caerulein stimulation with induction of IKK2(CA) caused increased tissue damage compared with either IKK2(CA) or caerulein alone.

Conclusions: Our observations suggest that the role of IKK2 activation in pancreatic acini is to induce leucocyte infiltration, but at a moderate level of activation it is not sufficient to induce pancreatic damage in mice. The IKK2(CA) induced infiltrations resemble those observed in autoimmune pancreatitis, indicating a role for IKK2/NF-kappaB in this disease. IKK2(CA) in pancreatic acinar cells increases tissue damage of secretagogue induced experimental pancreatitis underlining the proinflammatory role of the IKK/NF-kappaB pathway in this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1856776PMC
http://dx.doi.org/10.1136/gut.2005.084665DOI Listing

Publication Analysis

Top Keywords

pancreatic acinar
12
acinar cells
12
ikappab kinase-2
8
ikk2 activation
8
transgene expression
8
expression pancreas
8
ikk2ca
8
ikk2ca pancreatic
8
supramaximal caerulein
8
caerulein stimulation
8

Similar Publications

Enhancer of Zeste Homologue 2 (EZH2) is part of the Polycomb Repressor Complex 2, which promotes trimethylation of lysine 27 on histone 3 (H3K27me3) and genes repression. EZH2 is overexpressed in many cancers and studies in mice attributed both pro-oncogenic and tumor suppressive functions to EZH2 in pancreatic ductal adenocarcinoma (PDAC). EZH2 deletion enhances de novo KRAS-driven neoplasia following pancreatic injury, while increased EZH2 expression in PDAC patients is correlated to poor prognosis, suggesting a context-dependant effect for EZH2 in PDAC progression.

View Article and Find Full Text PDF

Whole genome and transcriptome analysis of pancreatic acinar cell carcinoma elucidates mechanisms of homologous recombination deficiency and unravels novel relevant fusion events.

Pathol Res Pract

December 2024

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065,  USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA. Electronic address:

Pancreatic acinar cell carcinoma (PACC) is a rare pancreatic tumor with a heterogeneous clinical course and, except for radical surgery, limited treatment options. We present a comprehensive study encompassing whole-genome and RNA sequencing of 7 tumor samples from 3 metastatic PACC patients to further delineate its genomic landscape and potential therapeutic implications. Our findings reveal distinct signatures of homologous recombination deficiency (HRD) in patients harboring pathogenic germline BRCA1/2 and FANCL mutations, demonstrating favorable responses to poly (ADP-ribose) polymerase 1 (PARP) inhibitors with prolonged disease-free intervals.

View Article and Find Full Text PDF

Impact of acute schistosomiasis mansoni and concurrent type 1 diabetes on pancreatic architecture in mice.

Exp Parasitol

December 2024

Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Medical Sciences College (FCM), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil.

It is not well understood how type 1 diabetes (T1D) and concomitant acute schistosomiasis mansoni affect pancreatic architecture. Male Swiss mice were administered streptozotocin (single 100 mg/kg i.p.

View Article and Find Full Text PDF

Tuft cells transdifferentiate to neural-like progenitor cells in the progression of pancreatic cancer.

Dev Cell

December 2024

Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA. Electronic address:

Pancreatic ductal adenocarcinoma (PDA) is partly initiated through the transdifferentiation of acinar cells to metaplasia, which progresses to neoplasia and cancer. Tuft cells (TCs) are chemosensory cells not found in the normal pancreas but arise in cancer precursor lesions and diminish during progression to carcinoma. These metaplastic TCs (mTCs) suppress tumor progression through communication with the tumor microenvironment, but their fate during progression is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!