Novel function of clathrin light chain in promoting endocytic vesicle formation.

Mol Biol Cell

Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33101, USA.

Published: October 2006

Clathrin-mediated endocytosis is a major pathway for uptake of lipid and protein cargo at the plasma membrane. The lattices of clathrin-coated pits and vesicles are comprised of triskelions, each consisting of three oligomerized heavy chains (HC) bound by a light chain (LC). In addition to binding HC, LC interacts with members of the Hip1/R family of endocytic proteins, including the budding yeast homologue, Sla2p. Here, using in vivo analysis in yeast, we provide novel insight into the role of this interaction. We find that overexpression of LC partially restores endocytosis to cells lacking clathrin HC. This suppression is dependent on the Sla2p binding region of LC. Using live cell imaging techniques to visualize endocytic vesicle formation, we find that the N-terminal Sla2p binding region of LC promotes the progression of arrested Sla2p patches that form in the absence of HC. We propose that LC binding to Sla2p positively regulates Sla2p for efficient endocytic vesicle formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635359PMC
http://dx.doi.org/10.1091/mbc.e06-07-0606DOI Listing

Publication Analysis

Top Keywords

endocytic vesicle
12
vesicle formation
12
light chain
8
sla2p binding
8
binding region
8
sla2p
6
novel function
4
function clathrin
4
clathrin light
4
chain promoting
4

Similar Publications

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Cells use 'active' energy-consuming motor and filament protein networks to control micrometre-scale transport and fluid flows. Biological active materials could be used in dynamically programmable devices that achieve spatial and temporal resolution that exceeds current microfluidic technologies. However, reconstituted motor-microtubule systems generate chaotic flows and cannot be directly harnessed for engineering applications.

View Article and Find Full Text PDF

Future applications of cyclic antimicrobial peptides in drug delivery.

Expert Opin Drug Deliv

January 2025

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, USA.

Introduction: Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes.

View Article and Find Full Text PDF

Studies have shown that the prognosis of dental implant treatment in patients with diabetes is not as good as that in the non-diabetes population. The nerve plays a crucial role in bone metabolism, but the role and the mechanism of peripheral nerves in regulating peri-implant osteogenesis under Type 2 diabetes mellitus (T2DM) situation remains unclear. In this study, it was shown that high glucose-stimulated Schwann cells (SCs) inhibited peri-implant osteogenesis via their exosomes.

View Article and Find Full Text PDF

Background: Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!