Acceleration of amyloid beta-peptide aggregation by physiological concentrations of calcium.

J Biol Chem

Department of Neurology and Division of Neuroscience, The Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

Published: September 2006

Alzheimer disease is characterized by the accumulation of aggregated amyloid beta-peptide (Abeta) in the brain. The physiological mechanisms and factors that predispose to Abeta aggregation and deposition are not well understood. In this report, we show that calcium can predispose to Abeta aggregation and fibril formation. Calcium increased the aggregation of early forming protofibrillar structures and markedly increased conversion of protofibrils to mature amyloid fibrils. This occurred at levels 20-fold below the calcium concentration in the extracellular space of the brain, the site at which amyloid plaque deposition occurs. In the absence of calcium, protofibrils can remain stable in vitro for several days. Using this approach, we directly compared the neurotoxicity of protofibrils and mature amyloid fibrils and demonstrate that both species are inherently toxic to neurons in culture. Thus, calcium may be an important predisposing factor for Abeta aggregation and toxicity. The high extracellular concentration of calcium in the brain, together with impaired intraneuronal calcium regulation in the aging brain and Alzheimer disease, may play an important role in the onset of amyloid-related pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1595535PMC
http://dx.doi.org/10.1074/jbc.M602061200DOI Listing

Publication Analysis

Top Keywords

abeta aggregation
12
amyloid beta-peptide
8
calcium
8
alzheimer disease
8
predispose abeta
8
protofibrils mature
8
mature amyloid
8
amyloid fibrils
8
aggregation
5
acceleration amyloid
4

Similar Publications

Alzheimer's disease (AD) is a neurodegenerative disease that is significantly characterized by cognitive and memory impairments, which worsen significantly with age. In the late stages of AD, metal ion disorders and an imbalance of reactive oxygen species (ROS) levels occur in the brain microenvironment, which causes abnormal aggregation of β-amyloid (Aβ), leading to a significant worsening of the AD symptoms. Therefore, we designed a composite nanomaterial of macrophage membranes-encapsulated Prussian blue nanoparticles (PB NPs/MM).

View Article and Find Full Text PDF

In the relentless pursuit of unraveling the intricate pathophysiology of Alzheimer's disease (AD), amyloid β (Aβ) proteins emerge as focal points due to their pivotal role in disease progression. The pathological hallmark of AD involves the aberrant aggregation of Aβ peptides into amyloid fibrils, precipitating a cascade of neurodegenerative events culminating in cognitive decline and neuronal loss. This study adopts a computational framework to investigate the potential therapeutic efficacy of novel biosurfactants (BS) in mitigating Aβ fibril formation.

View Article and Find Full Text PDF

Therapeutic implications of necroptosis activation in Alzheimer´s disease.

Alzheimers Res Ther

December 2024

Laboratory of Neurodegenerative Diseases, Center for Biomedicine, Universidad Mayor, Temuco, Chile.

In recent years, a growing body of research has unveiled the involvement of the necroptosis pathway in the pathogenesis of Alzheimer's disease (AD). This evidence has shed light on the mechanisms underlying neuronal death in AD, positioning necroptosis at the forefront as a potential target for therapeutic intervention. This review provides an update on the current knowledge on this emerging, yet rapidly advancing topic, encompassing all published studies that present supporting proof of the role of the necroptosis pathway in the neurodegenerative processes of AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu binding to the cellular prion protein (PrP).

View Article and Find Full Text PDF

Unraveling APOE4's Role in Alzheimer's Disease: Pathologies and Therapeutic Strategies.

Curr Protein Pept Sci

December 2024

Department of Pharmaceutical Engineering & Technology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India.

Alzheimer's disease (AD), the most common kind of dementia worldwide, is characterized by elevated levels of the amyloid-β (Aβ) peptide and hyperphosphorylated tau protein in the neurons. The complexity of AD makes the development of treatments infamously challenging. Apolipoprotein E (APOE) genes's ɛ4 allele is one of the main genetic risk factors for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!