A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Control of cardiac myofilament activation and PKC-betaII signaling through the actin capping protein, CapZ. | LitMetric

Control of cardiac myofilament activation and PKC-betaII signaling through the actin capping protein, CapZ.

J Mol Cell Cardiol

Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1.

Published: September 2006

Actin capping protein (CapZ) anchors the barbed ends of sarcomeric actin to the Z-disc. Myofilaments from transgenic mice (TG-CapZ) expressing a reduced amount of CapZ demonstrate altered function and protein kinase C (PKC) signaling [Pyle WG, Hart MC, Cooper JA, Sumandea MP, de Tombe PP, and Solaro RJ., Circ. Res. 90 (2002) 1299-306]. The aims of the current study were to determine the direct effects of CapZ on myofilament function and on PKC signaling to the myofilaments. Our studies compared mechanical properties of single myocytes from TG-CapZ mouse hearts to wild-type myocytes from which CapZ was extracted using PIP(2). We found that myofilaments from CapZ-deficient transgenic myocardium exhibited increased Ca(2+) sensitivity and maximum isometric tension. The extraction of CapZ from wild-type myofilaments replicated the increase in maximum isometric tension, but had no effect on myofilament Ca(2+) sensitivity. Immunoblot analysis revealed that the extraction of CapZ was associated with a reduction in myofilament-associated PKC-beta(II) and that CapZ-deficient transgenic myofilaments also lacked PKC-beta(II). Treatment of wild-type myofilaments with recombinant PKC-beta(II) reduced myofilament Ca(2+) sensitivity, whereas this effect was attenuated in myofilaments from TG-CapZ mice. Our results indicate that cardiac CapZ directly controls maximum isometric tension generation, and establish CapZ as an important component in anchoring PKC-beta(II) at the myofilaments, and for mediating the effects of PKC-beta(II) on myofilament function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2006.06.006DOI Listing

Publication Analysis

Top Keywords

ca2+ sensitivity
12
maximum isometric
12
isometric tension
12
capz
9
actin capping
8
capping protein
8
protein capz
8
myofilaments
8
pkc signaling
8
myofilament function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!