Unlabelled: To reveal the ANK complete loss of function phenotype in mice, we generated conditional and null alleles. Mice homozygous for the null allele exhibited widespread joint mineralization, similar in severity to animals harboring the original ank allele. A delayed yet similar phenotype was observed in mice with joint-specific loss of ANK function.
Introduction: The ANK pyrophosphate regulator was originally identified and proposed to play a key role in articular cartilage maintenance based on a single spontaneous mouse mutation (ank) that causes severe generalized arthritis. A number of human mutations have subsequently been reported in the human ortholog (ANKH), some of which produce skull and long bone defects with no apparent defects in joints or articular cartilage. None of the currently known mouse or human mutations clearly eliminate the function of the endogenous gene.
Materials And Methods: Two new Ank alleles were generated using homologous recombination in mouse embryonic stem (ES) cells. Joint range of motion assays and muCT studies were used to quantitatively assess phenotypic severity in wildtype, heterozygous, and homozygous mice carrying either the null (Anknull) or original (Ankank) allele. A Gdf5-Cre expressing line was crossed to mice harboring the conditional (Ankfloxp) allele to eliminate ANK function specifically in the joints. Histological stains and beta-galactosidase (LACZ) activity were used to determine the correlation between local loss of ANK function and defective joint phenotypes.
Results: Anknull/Anknull mice develop severe ectopic postnatal crystal deposition in almost every joint of the body, leading to eventual joint fusion and loss of mobility. The severity of phenotype in these mice is indistinguishable from that of Ankank/Ankank mice. In addition, despite the widespread expression of Ank in many tissues, the specific deletion of Ank in joints also produces joint mineralization and ankylosis.
Conclusions: These studies show that ANK function is required locally in joints to inhibit mineral formation and that the Ank gene plays a key role in postnatal maintenance of joint mobility and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1359/jbmr.060515 | DOI Listing |
Discov Med
November 2024
Department of Cardiology, The 82nd Group Army Hospital of the Chinese PLA, 071000 Baoding, Hebei, China.
Background: Hypoxia has a major regulatory impact on the electrical activity transmission in the myocardium, and it is involved in the development of tachyarrhythmia disease. Anchor protein G (ankyrin-G, ANK-G) is associated with voltage-gated Na channels (Nav1.5), but its specific role and mechanism have not been fully defined.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
Neurodegenerative diseases (NDDs) present significant challenges due to limited treatment options, ethical concerns surrounding traditional animal models, and the time-consuming and costly process of using human-induced pluripotent stem cells (iPSCs). We addressed these issues by developing a 3D culture protocol for differentiating SH-SY5Y cells into glutamatergic neurons, enhancing physiological relevance with a 3D microarray culture plate. Our protocol optimized serum concentration and incorporated retinoic acid (RA) to improve differentiation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
This study investigates the effects of microgravity on the differentiation and mineralization of IDG-SW3 osteocyte-like cells to understand the response of bone cells to microgravity and develop strategies to mitigate bone loss in astronauts. IDG-SW3 cells were cultured in collagen-coated dishes and subjected to a 3D clinostat to simulate microgravity 14 days after initiating differentiation. The static group remained under normal gravity.
View Article and Find Full Text PDFCirc Res
December 2024
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China.
Background: Disturbed metabolism and transport of citrate play significant roles in various pathologies. However, vascular citrate regulation and its potential role in aortic aneurysm (AA) development remain poorly understood.
Methods: Untargeted metabolomics by mass spectrometry was applied to identify upregulated metabolites of the tricarboxylic acid cycle in AA tissues of mice.
Trop Life Sci Res
October 2024
Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia.
Plants are rich in tandem repeats-containing proteins. It is postulated that the occurrence of tandem repeat gene families facilitates the adaptation and survival of plants in adverse environmental conditions. This study intended to identify the tandem repeats in the transcriptome of a high potential tropical horticultural plant, roselle ( L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!