We report the structural and electrical characterization of thin films of organic semiconductor molecules consisting of an oligothiophene core capped with electron-withdrawing tricyanovinyl (TCV) groups. X-ray diffraction and atomic force microscopy of evaporated films of three different TCV-capped oligothiophenes showed that the films were highly crystalline. Electrical transport was measured in thin film transistors employing silver source and drain contacts and channel probes to correct for contact resistance. Three compounds exhibited n-channel (electron) conduction consistent with cyclic voltametry data that indicated they undergo facile reduction. Maximum electron mobilities were 0.02 cm2/V.s with an on/off current ratio of 10(6). A fourth end-capped molecule, TCV-6T-TCV, which had six thiophene rings, exhibited both p- and n-channel transport. Overall, these results confirm that substitution of oligothiophene cores with electron-withdrawing groups is a useful strategy to achieve electron-transporting materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp061168vDOI Listing

Publication Analysis

Top Keywords

thin film
8
film transistors
8
exhibited n-channel
8
p-channel transport
4
transport behavior
4
behavior thin
4
transistors based
4
based tricyanovinyl-capped
4
tricyanovinyl-capped oligothiophenes
4
oligothiophenes report
4

Similar Publications

A PDMS/chitosan/MPMs composite film based on multi-field coupling enhancement for African swine fever virus P72 protein detection.

Mikrochim Acta

January 2025

Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China.

African swine fever (ASF) is an acute hemorrhagic disease in pigs caused by the African swine fever virus (ASFV), which has a high mortality rate and brought great damage to global pig farming industry. At present, there is no effective treatment or vaccine to combat ASFV infection, so early detection of ASFV has become particularly important. Therefore, the PDMS/chitosan/MPMs composite film was proposed to detect ASFV P72.

View Article and Find Full Text PDF

Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.

View Article and Find Full Text PDF

Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is a widely used biopolymer and one of the strongest natural materials.

View Article and Find Full Text PDF

Multilayer Graphene Stacked with Silver Nanowire Networks for Transparent Conductor.

Materials (Basel)

January 2025

Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.

A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!