A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ubiquitin ligase gene expression in healthy volunteers with 20-day bedrest. | LitMetric

In animal models, several ubiquitin ligases play an important role in skeletal muscle atrophy caused by unloading. In this study we examined protein ubiquitination and ubiquitin ligase gene expression in quadriceps femoris muscle from healthy volunteers after 20-day bedrest to clarify ubiquitin-dependent proteolysis in human muscles after unloading. During bedrest, thickness and cross-sectional area of the quadriceps femoris muscle decreased significantly by 4.6% and 3.7%, respectively. Ubiquitinated proteins accumulated in these atrophied human muscles. A real-time reverse transcription-polymerase chain reaction system showed that bedrest significantly upregulated expression of two ubiquitin ligase genes, Cbl-b and atrogin-1. We also performed DNA microarray analysis to examine comprehensive gene expression in the atrophied muscle. Bedrest mainly suppressed the expression of muscle genes associated with control of gene expression in skeletal muscle. Our results suggest that, in humans, Cbl-b- or atrogin-1-mediated ubiquitination plays an important role in unloading-induced muscle atrophy, and that unloading stress may preferentially inhibit transcriptional responses in skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.20611DOI Listing

Publication Analysis

Top Keywords

gene expression
16
ubiquitin ligase
12
skeletal muscle
12
ligase gene
8
healthy volunteers
8
volunteers 20-day
8
20-day bedrest
8
muscle
8
muscle atrophy
8
quadriceps femoris
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!