AQP and the control of fluid transport in a salivary gland.

J Membr Biol

Center for Integrative Bioscience, NIPS, National Institute for Natural Sciences, Myoudaiji, Okazaki 444-8787, Japan.

Published: March 2006

Experiments were performed with the perfused rat submandibular gland in vitro to investigate the nature of the coupling between transported salt and water by varying the osmolarity of the source bath and observing the changes in secretory volume flow. Glands were submitted to hypertonic step changes by changing the saline perfusate to one containing different levels of sucrose. The flow rate responded by falling to a lower value, establishing a new steady-state flow. The rate changes did not correspond to those expected from a system in which fluid production is due to simple osmotic equilibration, but were much larger. The changes were fitted to a model in which fluid production is largely paracellular, the rate of which is controlled by an osmosensor system in the basal membrane. The same experiments were done with glands from rats that had been bred to have very low levels of AQP5 (the principal aquaporin of the salivary acinar cell) in which little AQP5 is expressed at the basal membrane. In these rats, salivary secretion rates after hypertonic challenges were small and best modelled by simple osmotic equilibration. In rats which had intermediate AQP5 levels the changes in flow rate were similar to those of normal rats although their AQP5 levels were reduced.Finally, perfused normal glands were subject to retrograde ductal injection of salines containing different levels of Hg(2+) ions (0, 10 and 100 microM: ) which would act as inhibitors of AQP5 at the apical acinar membrane. The overall flow rates were progressively diminished with rising Hg(2+) concentration, but after hypertonic challenge the changes in flow rates were unchanged and similar to those of normal rats. All these results are difficult to explain by a cellular osmotic model but can be explained by a model in which paracellular flow is controlled by an osmosensor (presumably AQP5) present on the basal membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-005-0848-2DOI Listing

Publication Analysis

Top Keywords

flow rate
12
basal membrane
12
fluid production
8
simple osmotic
8
osmotic equilibration
8
controlled osmosensor
8
aqp5 levels
8
changes flow
8
normal rats
8
flow rates
8

Similar Publications

External delay and dispersion correction of automatically sampled arterial blood with dual flow rates.

Biomed Phys Eng Express

January 2025

Brain Health Imaging Centre, Centre for Addiction and Mental Health, B68-250 College St, Toronto, Ontario, M5T 1R8, CANADA.

Objective: Arterial sampling for PET imaging often involves continuously measuring the radiotracer activity concentration in blood using an automatic blood sampling system (ABSS). We proposed and validated an external delay and dispersion correction procedure needed when a change in flow rate occurs during data acquisition. We also measured the external dispersion constant of [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1.

View Article and Find Full Text PDF

This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.

View Article and Find Full Text PDF

Background: Intestinal transplantation (ITx) represents the only curative option for patients with irreversible intestinal failure. Nevertheless, its rejection rate surpasses that of other solid organ transplants due to the heightened immunological load of the gut. Regulatory T-cells (Tregs) are key players in the induction and maintenance of peripheral tolerance, suggesting their potential involvement in modulating host vs.

View Article and Find Full Text PDF

Objective: To compare low-cost "Suction Tube Uterine Tamponade" (STUT) treatment for refractory postpartum hemorrhage (PPH) with uterine balloon tamponade (UBT) using a randomized feasibility study.

Methods: After verbal assent, we allocated participants with refractory PPH by randomly ordered envelopes to STUT or routine UBT at 10 hospitals in South Africa and one tertiary referral center in Colombia between January 10, 2020, and May 3, 2024. In the STUT group, we inserted a 24 FG Levin stomach tube into the uterine cavity and applied suction.

View Article and Find Full Text PDF

Up-flow anaerobic sludge blanket bioreactor for the production of carboxylates: effect of inocula on process performance and microbial communities.

Bioresour Bioprocess

January 2025

Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain.

This research investigated the acidogenic fermentation (AF) of sugar cane molasses in an up-flow anaerobic sludge blanket (UASB) reactor for the production of carboxylates. The first step was to assess the optimum process temperature (25, 35 or 55 ºC) using two different granular inocula, one from a brewery company (BGS) and other from a paper plant company (PGS). These experiments determined that the most suitable temperature for carboxylates production was 25 ºC, obtaining higher bioconversions (27.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!