Berry diameter was monitored during dry-down and rewatering cycles and pressurization of the root system of Vitis vinifera (cv. Merlot) and Vitis labruscana (cv. Concord) to test changes in xylem functionality during grape ripening. Prior to veraison (onset of ripening), berries maintained their size under declining soil moisture until the plants had used 80% of the transpirable soil water, began to shrink thereafter, and recovered rapidly after rewatering. By contrast, berry diameter declined slowly but steadily during post-veraison water stress and did not recover after rewatering; irrigation merely prevented further shrinking. Preconditioning vines with a period of water stress after flowering did not influence the berries' reaction to subsequent changes in transpirable soil water. Pressurizing the root system led to concomitant changes in berry diameter only prior to veraison, although some post-veraison Concord, but not Merlot, berries cracked under root pressurization. The xylem-mobile dye basic fuchsin, infused via the shoot base, moved throughout the berry vasculature before veraison, but became gradually confined to the brush area during ripening. When the dye was infused through the stylar end of attached berries, it readily moved back to the plant both before and after veraison. Our work demonstrated that berry-xylem conduits retain their capacity for water and solute transport during ripening. It is proposed here that apoplastic phloem unloading coupled with solute accumulation in the berry apoplast may be responsible for the decline in xylem water influx into ripening grape berries. Instead, the xylem may serve to recycle excess phloem water back to the shoot.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erl020 | DOI Listing |
Int J Biol Macromol
January 2025
Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China. Electronic address:
In this study, composite films were developed by encapsulating cassia oil (CO) with β-cyclodextrin through a microencapsulation technique and incorporating it into a chitosan (CS), polyvinyl alcohol (PVA) and glycerol matrix. The primary objective of the film was to inhibit bacterial growth on the surface of fresh bananas and extend their shelf life. Characterization methods were employed to evaluate the physical properties and functionality of the composite films.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China. Electronic address:
The demand for extended shelf life and food safety in the food industry continues to rise. At the same time, the environmental burden of traditional plastic packaging materials is becoming increasingly serious. Therefore, in this study, an intelligent bilayer film with a pH-sensitive inner indicator film based on Artemisia Sphaerocephala Krasch.
View Article and Find Full Text PDFPlant Environ Interact
February 2025
Citrus Research International Nelspruit South Africa.
Citrus black spot (CBS), caused by , is an important fungal disease of citrus. Higher CBS severity has been associated with infections at the young and green stages of fruit. The length of the fruit susceptibility period may be influenced by the amount of inoculum and the climate of the citrus growing region.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. Electronic address:
The research intended to explore the control ability of alginate oligosaccharide (AOS) on Penicillium expansum infection in pear fruit by priming response and its mechanism. The results showed that 100 mg L AOS treatment could significantly reduce the incidence of postharvest blue mold and the lesion diameter in pear fruits and maintain their quality. The defense responses induced by AOS treatment alone were relatively mild in pear fruits.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China.
In order to explore the water and fertilizer requirements of eggplants in the western oasis of the river, the experiment was conducted in Minle County of Gansu Province in 2022 and 2023 under three water stress gradients and three nitrogen application levels: (1) moderate water stress (W, 50-60% in field water capacity [FC]), mild water stress (W, 60-70% in FC), and full irrigation (W, 70-80% in FC); (2) low nitrogen (N, 215 kg·ha), medium nitrogen (N, 270 kg·ha), and high nitrogen (N, 325 kg·ha). Moderate and mild water stress were applied during eggplant flowering and fruiting while full irrigation was provided during the other growth stages; a control class (CK) was established with full irrigation throughout the whole plant growth without nitrogen application. This study investigated the effects of water-saving and nitrogen reduction on the yield, quality, and water-nitrogen use efficiency of eggplants in a cold and arid environment in the Hexi Oasis irrigation area of China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!