Direct derivatization of drugs in untreated biological samples for gas chromatographic analysis.

J Pharm Biomed Anal

Department of Analytical Chemistry, AB Hässle, S-431 83 Mölndal, Sweden.

Published: December 2009

The possibilities to derivatize an analyte directly in the biological sample are reviewed with examples from our own experiences and from the literature. Techniques, such as extractive acylation, alkylation and benzoylation, are frequently used. Improvement of the extractability of the drug from the matrix is a common feature, especially with hydrophilic compounds, where sometimes cyclizing reactions can be employed. Several analytes are reactive or labile in the sample and can be trapped in derivatization reactions in situ. In many cases, two-phase reactions lead to milder derivatization conditions (e.g. dealkylation of tertiary amines), which is favourable from a clean-up point of view.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0731-7085(86)80092-9DOI Listing

Publication Analysis

Top Keywords

direct derivatization
4
derivatization drugs
4
drugs untreated
4
untreated biological
4
biological samples
4
samples gas
4
gas chromatographic
4
chromatographic analysis
4
analysis possibilities
4
possibilities derivatize
4

Similar Publications

The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking.

View Article and Find Full Text PDF

Qualitative and Quantitative Analyses of 1-Aminocyclopropane-1-carboxylic Acid Concentrations in Plants Organs Using Phenyl Isothiocyanate Derivatization.

J Agric Food Chem

January 2025

Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China.

1-Aminocyclopropane-1-carboxylic acid (ACC) is a direct precursor of phytohormone ethylene. We used a phenyl isothiocyanate (PITC) derivatization modification method combined with spectrographic analysis to isolate and identify three products of the derivatization reactions of ACC and PITC. The MRM mode of UPLC-MS/MS was used to establish the analysis of 6-phenyl-5-thioxo-4,6-diazaspiro[2.

View Article and Find Full Text PDF

Herein, we report an electricity-driven activation of aziridine via direct anodic oxidation to give -heterocycles and 1,2-bifunctionalized products by excluding any oxidant/reductant or metal catalyst. Many structurally modified aziridines were employed in the presence of different nitriles. A large variety of nucleophiles were screened to furnish chemoselectively O-alkylated and C-alkylated products.

View Article and Find Full Text PDF

Interest in obstructive sleep apnea is rising due to its neurocognitive and cardiovascular impacts, including systemic hypertension, myocardial infarction, and cerebrovascular events. Obstructive sleep apnea diagnosis can be suggested through symptoms like snoring, daytime sleepiness, and physical signs like increased neck circumference; however, overnight polysomnography is recommended to confirm. Exhaled breath condensate has emerged as a novel, noninvasive technique for biomarker sample collection.

View Article and Find Full Text PDF

A Protocol for GC-MS Profiling of Chiral Secondary Amino Acids.

Methods Mol Biol

January 2025

Laboratory of Analytical Biochemistry & Metabolomics, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.

A simple analytical workflow is described for gas chromatographic-mass spectrometric (GC-MS)-based chiral profiling of secondary amino acids (AAs) in biological matrices. The sample preparation is carried out directly in aqueous biological sample extracts and involves in situ heptafluorobutyl chloroformate (HFBCF) derivatization-liquid-liquid microextraction of nonpolar products into hexane phase followed by subsequent formation of the corresponding methylamides from the HFB esters by direct treatment with methylamine reagent solution. The (O, N) HFB-butoxycarbonyl-methylamide AA products (HFBOC-MA) are separated on a Chirasil-L-Val capillary column and quantitatively measured by GC-MS operated in selected ion monitoring (SIM) mode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!