Rats were given single injections of vehicle or one of three doses of (+)-amphetamine (AM), 4-methoxyamphetamine (MA) or 4-ethoxyamphetamine (EA) after pretreatment with vehicle or reserpine, and vehicle or alpha-methyl-para-tyrosine (AMPT). EA is a "designer" drug that was recently seized from an illicit laboratory in Canada. Locomotion of the rats was recorded after treatment with the drugs, and whole brain levels of the drugs as well as monoamine neurotransmitters and their major acidic metabolites were then determined. Neither of the ring-substituted AM analogues influenced locomotion. AM induced locomotion in a dose-dependent manner, and this effect was blocked by AMPT but potentiated by reserpine. Brain concentrations of EA were lower than those of the other two drugs. The brain levels of monoamines and their metabolites indicate that AM releases a newly synthesized pool of dopamine which is transferred to vesicles after re-uptake. A very low dose of AM, but not higher doses, was found to elevate serotonin (5-hydroxytryptamine: 5-HT) levels independently of effects on catecholamines. Both MA and EA affected monoamine metabolites in a manner consistent with actions as reversible inhibitors of monoamine oxidase-an effect which has been previously demonstrated to be true for MA. Both drugs increased 5-HT levels at a very low dose, as did AM, but also increased noradrenaline levels at this dose. It is concluded that EA is not a psychomotor stimulant, but is similar in many of its effects to MA, a potent hallucinogen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1188362 | PMC |
Sci Adv
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
Acute alcohol intoxication could cause multiorgan damage, including nervous, digestive, and cardiovascular systems, and in particular, irreversible damage to the brain and liver. Emerging studies have revealed that the endogenous multienzymatic antioxidant defense system (MEAODS) plays a central role in preventing oxidative stress and other toxicological compounds produced by alcohol. However, few available drugs could quickly regulate MEAODS.
View Article and Find Full Text PDFSci Adv
January 2025
School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).
View Article and Find Full Text PDFEndocr Oncol
January 2024
Department of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.
Summary: Craniopharyngiomas (CPs) are rare brain epithelial tumours arising in the suprasellar region, infiltrating adjacent areas causing visual loss, panhypopituitarism, cognitive deficits and morbid obesity. Papillary CPs (PCPs) harbour in 94% BRAF mutation cases. Two patients with PCP and BRAF V600E mutations but with different tumour status were treated with BRAF and MEK inhibitors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Technische Universität München, Division of Peptide Biochemistry, Emil-Erlenmeyer-Forum 5, 85354, Freising, GERMANY.
Amyloid self-assembly of α-synuclein (αSyn) is linked to the pathogenesis of Parkinson's disease (PD). Type 2 diabetes (T2D) has recently emerged as a risk factor for PD. Cross-interactions between their amyloidogenic proteins may act as molecular links.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Centre for Developmental Neurobiology, King's College London, London, UK.
The choroid plexus (ChP) is a vital brain structure that produces cerebrospinal fluid (CSF) and forms a selective barrier between the blood and CSF, essential for brain homeostasis. Composed of secretory epithelial cells, connective stroma, and a fenestrated vascular network, the ChP supports nutrient transport, immune surveillance, and the clearance of toxic by-products. Despite its significance in maintaining cerebral function, the mechanisms underlying its development and maturation remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!