Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement.

J Am Chem Soc

Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.

Published: August 2006

The aggregation of alpha-synuclein (AS) is characteristic of Parkinson's disease and other neurodegenerative synucleinopathies. Interactions with metal ions affect dramatically the kinetics of fibrillation of AS in vitro and are proposed to play a potential role in vivo. We recently showed that Cu(II) binds at the N-terminus of AS with high affinity (K(d) approximately 0.1 microM) and accelerates its fibrillation. In this work we investigated the binding features of the divalent metal ions Fe(II), Mn(II), Co(II), and Ni(II), and their effects on AS aggregation. By exploiting the different paramagnetic properties of these metal ions, NMR spectroscopy provides detailed information about the protein-metal interactions at the atomic level. The divalent metal ions bind preferentially and with low affinity (millimolar) to the C-terminus of AS, the primary binding site being the (119)DPDNEA(124) motif, in which Asp121 acts as the main anchoring residue. Combined with backbone residual dipolar coupling measurements, these results suggest that metal binding is not driven exclusively by electrostatic interactions but is mostly determined by the residual structure of the C-terminus of AS. A comparative analysis with Cu(II) revealed a hierarchal effect of AS-metal(II) interactions on AS aggregation kinetics, dictated by structural factors corresponding to different protein domains. These findings reveal a strong link between the specificity of AS-metal(II) interactions and the enhancement of aggregation of AS in vitro. The elucidation of the structural basis of AS metal binding specificity is then required to elucidate the mechanism and clarify the role of metal-protein interactions in the etiology of Parkinson's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0618649DOI Listing

Publication Analysis

Top Keywords

metal ions
20
divalent metal
12
binding specificity
8
enhancement aggregation
8
parkinson's disease
8
metal binding
8
as-metalii interactions
8
metal
7
interactions
6
ions
5

Similar Publications

The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.

View Article and Find Full Text PDF

Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) can effectively attenuate heavy metal mobility in aquatic ecosystems and reduce metal toxicity to cells. However, a systematic study of microalgae EPS responses and their adsorption behaviors, characteristics, and mechanisms under different heavy metal exposures has not been performed. In this study, EPS extracted from Chlamydomonas reinhardtii CC-125 was analyzed for compositional changes (monosaccharides and proteins) under Cd, Cu, Pb, and Zn treatments.

View Article and Find Full Text PDF

The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.

View Article and Find Full Text PDF

Characterization of a novel D-sorbitol dehydrogenase from Faunimonas pinastri A52C2.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.

The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!