The aggregation of alpha-synuclein (AS) is characteristic of Parkinson's disease and other neurodegenerative synucleinopathies. Interactions with metal ions affect dramatically the kinetics of fibrillation of AS in vitro and are proposed to play a potential role in vivo. We recently showed that Cu(II) binds at the N-terminus of AS with high affinity (K(d) approximately 0.1 microM) and accelerates its fibrillation. In this work we investigated the binding features of the divalent metal ions Fe(II), Mn(II), Co(II), and Ni(II), and their effects on AS aggregation. By exploiting the different paramagnetic properties of these metal ions, NMR spectroscopy provides detailed information about the protein-metal interactions at the atomic level. The divalent metal ions bind preferentially and with low affinity (millimolar) to the C-terminus of AS, the primary binding site being the (119)DPDNEA(124) motif, in which Asp121 acts as the main anchoring residue. Combined with backbone residual dipolar coupling measurements, these results suggest that metal binding is not driven exclusively by electrostatic interactions but is mostly determined by the residual structure of the C-terminus of AS. A comparative analysis with Cu(II) revealed a hierarchal effect of AS-metal(II) interactions on AS aggregation kinetics, dictated by structural factors corresponding to different protein domains. These findings reveal a strong link between the specificity of AS-metal(II) interactions and the enhancement of aggregation of AS in vitro. The elucidation of the structural basis of AS metal binding specificity is then required to elucidate the mechanism and clarify the role of metal-protein interactions in the etiology of Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0618649 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.
View Article and Find Full Text PDFActa Biomater
January 2025
College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China. Electronic address:
Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
Extracellular polymeric substances (EPS) can effectively attenuate heavy metal mobility in aquatic ecosystems and reduce metal toxicity to cells. However, a systematic study of microalgae EPS responses and their adsorption behaviors, characteristics, and mechanisms under different heavy metal exposures has not been performed. In this study, EPS extracted from Chlamydomonas reinhardtii CC-125 was analyzed for compositional changes (monosaccharides and proteins) under Cd, Cu, Pb, and Zn treatments.
View Article and Find Full Text PDFEnviron Technol
January 2025
Chengdu Center, China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu, People's Republic of China.
The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!