Fast atom bombardment mass spectrometry (FAB-MS) and high-performance liquid chromatography using a photodiode-array ultraviolet detector were applied to study a dynorphin-converting endopeptidase from the human pituitary gland. The specificity of the enzyme was tested towards various opioid peptides derived from the prodynorphin precursor, i.e. dynorphin A, dynorphin B and alpha-neoendorphin. Peptide fragments were analysed directly by continuous-flow FAB-MS and those containing aromatic amino acids were detected independently by the photodiode-array ultraviolet detector. The results obtained suggest a similar processing of these structure-related substrates and it appears that the enzyme recognizes the dibasic stretch in their sequence. It is also clear from this study that the combination of the above techniques provides a powerful tool for studies of enzymatic conversion among the prodynorphin-derived peptides and it should be applicable to studies of similar mechanisms in other peptide systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9673(01)88439-9DOI Listing

Publication Analysis

Top Keywords

photodiode-array ultraviolet
12
fast atom
8
atom bombardment
8
bombardment mass
8
mass spectrometry
8
high-performance liquid
8
liquid chromatography
8
ultraviolet detector
8
approach studying
4
studying proteinase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!