A number of azanonaboranes containing imidazole derivatives have been synthesized by a ligand-exchange reaction. The exo-NH(2)R group of the azanonaborane of the type [(RH(2)N)B(8)H(11)NHR] can be exchanged by one hetero-nitrogen atom of the imidazole ring. In the case of histamine, the exchange takes place on the aliphatic amino group, the hetero-nitrogen atom of the imidazole ring or both of them. The products were confirmed by NMR, IR spectroscopy, elemental analysis, and mass spectrometry. The electron-withdrawing effect of the nitro group in 2-nitroimidazole is the main hindrance to achieve the exchange reaction. In vitro experiments were performed with B16 melanoma cells. A comparison of the biological properties of the products in which the B(8)N cluster is connected to the hetero-nitrogen atom of imidazole ring or the aliphatic NH(2) group showed that incorporation of B(8)N cluster unit into primary amino group increases the compound's toxicity. In contrast, this specificity for cytotoxicity effect was not observed in the case of histamine containing two B(8)N clusters which was relatively nontoxic and did not inhibit colony formation up to concentrations of 2 mM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200501580 | DOI Listing |
Nat Commun
October 2021
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China.
Uncovering the dynamics of active sites in the working conditions is crucial to realizing increased activity, enhanced stability and reduced cost of oxygen evolution reaction (OER) electrocatalysts in proton exchange membrane electrolytes. Herein, we identify at the atomic level potential-driven dynamic-coupling oxygen on atomically dispersed hetero-nitrogen-configured Ir sites (AD-HN-Ir) in the OER working conditions to successfully provide the atomically dispersed Ir electrocatalyst with ultrahigh electrochemical acidic OER activity. Using in-situ synchrotron radiation infrared and X-ray absorption spectroscopies, we directly observe that one oxygen atom is formed at the Ir active site with an O-hetero-Ir-N structure as a more electrophilic active centre in the experiment, which effectively promotes the generation of key *OOH intermediates under working potentials; this process is favourable for the dissociation of HO over Ir active sites and resistance to over-oxidation and dissolution of the active sites.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2021
Department of Chemistry, National Institute of Technology, Kurukshetra 136119, Haryana, India. Electronic address:
The synthesis of five D-n-A type star-shaped octupolar molecules is presented in the current work. The exploration of the potential applicability of molecules under study in organic optoelectronics as electron or hole transporting materials is carried out by DFT methods. All the molecules have a 1,3,5-triazine core, which acts as an electron acceptor (A).
View Article and Find Full Text PDFChemistry
October 2006
Department of Chemistry, Faculty of Science, University of Tanta, 31527 Tanta, Egypt.
A number of azanonaboranes containing imidazole derivatives have been synthesized by a ligand-exchange reaction. The exo-NH(2)R group of the azanonaborane of the type [(RH(2)N)B(8)H(11)NHR] can be exchanged by one hetero-nitrogen atom of the imidazole ring. In the case of histamine, the exchange takes place on the aliphatic amino group, the hetero-nitrogen atom of the imidazole ring or both of them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!