A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Friction and adhesion in the tarsal and metatarsal scopulae of spiders. | LitMetric

Friction and adhesion in the tarsal and metatarsal scopulae of spiders.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

Evolutionary Biomaterials Group, Department Arzt, Max Planck Institute for Metals Research, Heisenbergstr. 3, 70569, Stuttgart, Germany.

Published: November 2006

Friction and adhesion forces of the ventral surface of tarsi and metatarsi were measured in the bird spider Aphonopelma seemanni (Theraphosidae) and the hunting spider Cupiennius salei (Ctenidae). Adhesion measurements revealed no detectable attractive forces when the ventral surfaces of the leg segments were loaded and unloaded against the flat smooth glass surface. Strong friction anisotropy was observed: friction was considerably higher during sliding in the distal direction. Such anisotropy is explained by an anisotropic arrangement of microtrichia on setae: only the setal surface facing in the distal direction of the leg is covered by the microtrichia with spatula-like tips. When the leg is pushed, the spatula-shaped tips of microtrichia contact the substrate, whereas, when the leg is pulled over a surface, setae bend in the opposite direction and contact the substrate with their spatulae-lacking sides. In an additional series of experiments, it was shown that desiccation has an effect on the friction force. Presumably, drying of the legs results in reduction of the flexibility of the setae, microtrichia, spatulae, and underlying cuticle; this diminishes the ability to establish proper contact with the substrate and thus reduces the contact forces.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00359-006-0157-yDOI Listing

Publication Analysis

Top Keywords

contact substrate
12
friction adhesion
8
forces ventral
8
distal direction
8
friction
5
adhesion tarsal
4
tarsal metatarsal
4
metatarsal scopulae
4
scopulae spiders
4
spiders friction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!