An experiment was conducted to compare the effects of organic (Zn AA complex, ZnAA) and inorganic Zn (ZnSO4) sources on sows and their progeny during gestation and lactation and on the pigs during the nursery period. The dietary treatments were 1) a corn-soybean meal diet with 100 ppm Zn from ZnSO4 (control); 2) diet 1 + 100 ppm additional Zn from ZnSO4; and 3) diet 1 + 100 ppm additional Zn from ZnAA. Dietary additions were on an as-fed basis. Thirty-one primaparous and multiparous sows were allotted to the treatment diet beginning on d 15 of gestation and continuing through lactation. At weaning (d 17 of age), 202 pigs (63, 55, and 84 pigs for treatments 1 to 3, respectively) were allotted to the same dietary treatment as their dam. The pigs were fed a 3-phase diet regimen during the nursery period: d 0 to 7 (phase I); d 7 to 21 (phase II); and d 21 to 28 (phase III). At weaning and at the end of phase III, 1 gilt per replicate was killed, and the left front foot, liver, pancreas, and entire small intestine were removed. Diet had no effect (P > 0.10) on any response during gestation. During lactation, there was an increase (P < 0.10) in litter birth weight in sows fed ZnAA compared with those fed the control or ZnSO4 diets. The sows fed ZnAA nursed more pigs (P < 0.10) than sows fed the ZnSO4 diet, and they weaned more pigs (P < 0.05) than sows fed the control diet. Jejunal villus height of the weaned pigs from sows fed ZnSO4 was increased (P < 0.05) compared with those from the sows fed the control diet. During the nursery period, growth performance was not affected (P > 0.10) by diet. Pigs fed ZnSO4 had greater duodenal villus width (P < 0.05) than those fed ZnAA, and pigs fed ZnSO4 or the control diet had greater ileal villus width (P < 0.05) than those fed ZnAA. Pigs fed ZnSO4 or ZnAA had more (P < 0.05) bone Zn than those fed the control diet. Liver Zn concentration was greatest in pigs fed ZnSO4, followed by those fed ZnAA, and then by those fed the control diet (P < 0.05). Pancreas Zn was increased (P < 0.05) in pigs fed ZnSO4 compared with those fed the control diet. These results suggest that 100 ppm Zn in trace mineral premixes provides adequate Zn for optimal growth performance of nursery pigs, but that 100 ppm additional Zn from ZnAA in sow diets may increase pigs born and weaned per litter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2527/jas.2005-627 | DOI Listing |
Genomics
January 2025
Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands. Electronic address:
This study investigates the impact of maternal gestation diets with varying fiber contents on gene expression and chromatin accessibility in fetuses and piglets fed a low fiber diet post weaning. High-fiber maternal diets, enriched with sugar beet pulp or pea internal fiber, were compared to a low-fiber maternal diet to evaluate their effects on liver and muscle tissues. The findings demonstrate that maternal high-fiber diets significantly alter chromatin accessibility, predicted transcription factor activity and transcriptional landscape in both fetuses and piglets.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain.
The present study investigates the impact of supplementing diets with a synergistic blend of short- and medium-chain fatty acids (SCFAs-MCFAs) during the peripartum and lactation phases on early microbial colonization and the subsequent growth performance of newborn pigs. The experiment involved 72 sows and their litters, with a follow-up on 528 weaned pigs. Sows were fed either a control diet or a diet supplemented with SCFAs-MCFAs and the pigs were monitored for their growth performance and microbial populations.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Animal Science, South Dakota State University, Brookings, SD 57006, USA.
Twenty-seven gestating primiparous sows (203 ± 9.1 kg initial body weight on d 89 ± 1 of gestation) were selected to determine the effect of standardized ileal digestible (SID) sulfur-containing amino acid (SAA) intake during late gestation on whole-body nitrogen (N) retention and subsequent litter performance. Primiparous sows were assigned to one of two experimental diets that provided SAAs at 63 or 200% of the estimated requirements during late gestation (0.
View Article and Find Full Text PDFJ Anim Sci
January 2024
Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
Lactating sows and their litters are particularly vulnerable to heat stress (HS). HS decreases fertility, feed intake, milk production, and litter growth of sows. Approaches are needed to mitigate the negative effects of HS on animal welfare and oxidative damage to tissues.
View Article and Find Full Text PDFJ Anim Sci
December 2024
Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
The objective was to evaluate the effect of providing dry pelleted starter diet (DPS) or a liquid mixture of milk replacer and starter diet (LMR+S) to suckling pigs housed in farrowing pens of sub-standard or optimal hygiene conditions on pig growth to slaughter, and post-weaning (PW) intestinal parameters. On day (d) 107 of gestation, 87 sows were randomly allocated to one of four treatments in a 2×2 factorial arrangement. The factors were creep feeding (DPS or LMR+S) and pre-farrowing hygiene routine (SUB-STANDARD or OPTIMAL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!