T cell activation and tolerance are regulated by costimulatory molecules. Although PD-1 serves as a crucial negative regulator of T cells, the function of its ligands, PDL1 and PDL2, is still controversial. In this study, we created a PDL2-deficient mouse to characterize its function in T cell activation and tolerance. Antigen-presenting cells from PDL2-/- mice were found to be more potent in activation of T cells in vitro over the wild-type controls, which depended on PD-1. Upon immunization with chicken ovalbumin, PDL2-/- mice exhibited increased activation of CD4(+) and CD8(+) T cells in vivo when compared with WT animals. In addition, T cell tolerance to an oral antigen was abrogated by the lack of PDL2. Our results thus demonstrate that PDL2 negatively regulates T cells in immune responses and plays an essential role in immune tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1544232PMC
http://dx.doi.org/10.1073/pnas.0601347103DOI Listing

Publication Analysis

Top Keywords

cell activation
12
activation tolerance
12
pdl2-/- mice
8
activation
5
tolerance
5
cells
5
regulation cell
4
pdl2
4
tolerance pdl2
4
pdl2 cell
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Doxorubicin (DOXO) has long been used clinically and remains a key drug in cancer therapy. DOXO-induced cardiomyopathy (DICM) is a chronic and fatal complication that severely limits the use of DOXO. However, there are very few therapeutic agents for DICM, and there is an urgent need to identify those that can be used for a larger number of patients.

View Article and Find Full Text PDF

Background And Aims: Maternal obesity increases the risk of the paediatric form of metabolic dysfunction-associated steatotic liver disease (MASLD), affecting up to 30% of youth, but the developmental origins remain poorly understood.

Methods: Using a Japanese macaque model, we investigated the impact of maternal Western-style diet (mWSD) or chow diet followed by postweaning WSD (pwWSD) or chow diet focusing on bile acid (BA) homeostasis and hepatic fibrosis in livers from third-trimester fetuses and 3-year-old juvenile offspring.

Results: Juveniles exposed to mWSD had increased hepatic collagen I/III content and stellate cell activation in portal regions.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Background: To correlate between immunohistochemical expression of tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and natural killer (NK) cells with the AJCC 8th edition TNM staging system and other disease-modifying clinico-pathological variables.

Methods: The representative histology sections of tumor invasive margin (IM) and tumor core (TC) were selected according to the International Immuno-Oncology Biomarker Working Group and were subjected to immunohistochemistry with antibodies for TILs (CD3, CD8, FOXP3), NK Cells (CD57), TAMs (CD68, CD163) and pan-leukocyte marker (CD45). Histo-immuno-density-intensity (HIDI) scoring was calculated as a product of the proportion and intensity of staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!