Events directly regulating Gln3 intracellular localization and nitrogen catabolite repression (NCR)-sensitive transcription in Saccharomyces cerevisiae are interconnected with many cellular processes that influence the utilization of environmental metabolites. Among them are intracellular trafficking of the permeases that transport nitrogenous compounds and their control by the Tor1,2 signal transduction pathway. Npr1 is a kinase that phosphorylates and thereby stabilizes NCR-sensitive permeases, e.g. Gap1 and Mep2. It is also a phosphoprotein for which phosphorylation and kinase activity are regulated by Tor1,2 via Tap42 and Sit4. Npr1 has been reported to negatively regulate nuclear localization of Gln3 in SD (ammonia)-grown cells. Thus we sought to distinguish whether Npr1: (i) functions directly as a component of NCR control; or (ii) influences Gln3 localization indirectly, possibly as a consequence of participating in protein trafficking. If Npr1 functions directly, then the ability of all good nitrogen sources to restrict Gln3 to the cytoplasm should be lost in an npr1Delta just as occurs when URE2 (encoding this well studied negative Gln3 regulator) is deleted. We show that nuclear localization of Gln3-Myc(13) in an npr1Delta occurred only with ammonia as the nitrogen source. Other good nitrogen sources, e.g. glutamine, serine, or asparagine, restricted Gln3-Myc(13) to the cytoplasm of both wild type and npr1Delta cells. In other words, the npr1Delta did not possess the uniform phenotype for all repressive nitrogen sources characteristic of ure2Delta. This suggests that the connection between Gln3 localization and Npr1 is indirect, arising from the influence of Npr1 on the ability of cells to utilize ammonia as a repressive nitrogen source.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266094 | PMC |
http://dx.doi.org/10.1074/jbc.M604171200 | DOI Listing |
Genetics
April 2021
Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
Gln3 activates Nitrogen Catabolite Repression, NCR-sensitive expression of the genes required for Saccharomyces cerevisiae to scavenge poor nitrogen sources from its environment. The global TorC1 kinase complex negatively regulates nuclear Gln3 localization, interacting with an α-helix in the C-terminal region of Gln3, Gln3656-666. In nitrogen replete conditions, Gln3 is sequestered in the cytoplasm, whereas when TorC1 is down-regulated, in nitrogen restrictive conditions, Gln3 migrates into the nucleus.
View Article and Find Full Text PDFCurr Genet
October 2020
Department of Biology, Georgetown University, Reiss Science Building 406, Washington, DC, 20057, USA.
Saccharomyces cerevisiae adapts to oxidative, osmotic stress and nutrient deprivation through transcriptional changes, decreased proliferation, and entry into other developmental pathways such as pseudohyphal formation and sporulation. Inositol pyrophosphates are necessary for these cellular responses. Inositol pyrophosphates are molecules composed of the phosphorylated myo-inositol ring that carries one or more diphosphates.
View Article and Find Full Text PDFGenetics
August 2019
Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, 38163 Tennessee
lives in boom and bust nutritional environments. Sophisticated regulatory systems have evolved to rapidly cope with these changes while preserving intracellular homeostasis. Target of Rapamycin Complex 1 (TorC1), is a serine/threonine kinase complex and a principle nitrogen-responsive regulator.
View Article and Find Full Text PDFYeast
December 2018
Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India.
Hsp30 is a plasma membrane localized heat shock protein in Saccharomyces cerevisiae whose expression is induced by numerous environmental stressors. Elucidation of its mechanism of action has remained elusive primarily because hsp30Δ cells do not show a strong phenotype. To identify cellular functions associated with Hsp30, we thus compared the transcriptome of BY4741hsp30Δ with that of its wild type counterpart.
View Article and Find Full Text PDFGenetics
January 2018
Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!