AI Article Synopsis

  • Noise-induced masking during speech listening affects the left hemisphere more significantly than the right.
  • Certain regions in the left hemisphere showed reduced activation under noise conditions, while primary auditory cortices remained unaffected on both sides.
  • The study involved 12 healthy participants using fMRI to analyze brain activity while exposed to speech with and without white noise.

Article Abstract

Conclusions: Noise-induced masking has different effects on the two hemispheres during speech listening. Auditory-associated cortices in the left hemisphere were more affected by masking than the right side. However, activation of primary and secondary auditory cortices was not affected in both sides under the masking with high signal to noise ratio.

Objectives: The purpose of this study was to investigate the effects of masking on the central auditory system during speech listening in white noise.

Materials And Methods: Twelve healthy young subjects with normal hearing participated in this study. Functional magnetic resonance imaging (fMRI) was performed while subjects were listening to speech sounds alone and speech plus white noise binaurally.

Results: In humans, the activation of several regions including the middle parts of the superior and middle temporal gyri, parahippocampal gyrus, cuneus and thalamus of the left hemisphere was significantly reduced under the masking paradigm with +5 dB signal to noise ratio. In addition, reduced activation was also found at the lingual gyrus, anterior and middle parts of the superior temporal gyrus (STG), uncus, fusiform gyrus, and inferior frontal gyrus of the right hemisphere during masking.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00016480500546375DOI Listing

Publication Analysis

Top Keywords

speech listening
12
effects masking
8
listening white
8
white noise
8
left hemisphere
8
hemisphere masking
8
signal noise
8
middle parts
8
parts superior
8
masking
6

Similar Publications

Objective: This study aims to evaluate the potential association of perioperative hearing outcomes with frailty by Modified 5-Item Frailty Index (mFI-5).

Design: Retrospective cross-sectional study.

Setting: Single-institutional study conducted at a tertiary care hospital between January 2018 and January 2022.

View Article and Find Full Text PDF

Music pre-processing methods are currently becoming a recognized area of research with the goal of making music more accessible to listeners with a hearing impairment. Our previous study showed that hearing-impaired listeners preferred spectrally manipulated multi-track mixes. Nevertheless, the acoustical basis of mixing for hearing-impaired listeners remains poorly understood.

View Article and Find Full Text PDF

Ever since de Saussure [Course in General Lingustics (Columbia University Press, 1916)], theorists of language have assumed that the relation between form and meaning of words is arbitrary. However, recently, a body of empirical research has established that language is embodied and contains iconicity. Sound symbolism, an intrinsic link language users perceive between word sound and properties of referents, is a representative example of iconicity in language and has offered profound insights into theories of language pertaining to language processing, language acquisition, and evolution.

View Article and Find Full Text PDF

Acoustic-phonetic perception refers to the ability to perceive and discriminate between speech sounds. Acquired impairment of acoustic-phonetic perception is known historically as "pure word deafness" and typically follows bilateral lesions of the cortical auditory system. The extent to which this deficit occurs after unilateral left hemisphere damage and the critical left hemisphere areas involved are not well defined.

View Article and Find Full Text PDF

Aerodynamic and Acoustic Power in Infant Cry.

J Voice

January 2025

Utah Center for Vocology, University of Utah, Salt Lake City, UT; National Center for Voice and Speech, Salt Lake City, UT. Electronic address:

Objectives: Acoustic and aerodynamic powers in infant cry are not scaled downward with body size or vocal tract size. The objective here was to show that high lung pressures and impedance matching are used to produce power levels comparable to those in adults.

Study Design And Methodology: A computational model was used to obtain power distributions along the infant airway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!