Involvement of phosphorylated Ca2+/calmodulin-dependent protein kinase II and phosphorylated extracellular signal-regulated protein in the mouse formalin pain model.

Brain Res

Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okcheon-Dong, Chuncheon, Gangwon-Do, 200-702, South Korea.

Published: September 2006

In the present study, we investigated the role of phosphorylated calcium/calmodulin-dependent protein kinase II (pCaMK-II) and phosphorylated extracellular signal-regulated protein kinase (pERK) in nociceptive processing at the spinal and supraspinal levels in the formalin subcutaneous induced mouse pain model. In the immunoblot assay, subcutaneous (s.c.) injection with formalin increased the pERK and pCaMK-IIalpha level in the spinal cord, and an immunohistochemical study showed that the increase of pERK and pCaMK-IIalpha immunoreactivity mainly occurred in the laminae I and II areas of the spinal dorsal horn. At the supraspinal level, although pERK was not changed in the hippocampus induced by formalin s.c. injection, pCaMK-IIalpha was increased in the hippocampus and hypothalamus by s.c. formalin injection, and an increase of pCaMK-IIalpha immunoreactivity mainly occurred in the pyramidal cells and the stratum lucidum/radiatum layer of the CA3 region of hippocampus and paraventricular nucleus of the hypothalamus. Moreover, pERK immunoreactivity in the hypothalamic paraventricular nucleus was also increased. The second phase of nociceptive behavior induced by formalin administered either i.t. or intracerebroventricularly (i.c.v.) was attenuated by PD98059 (ERK inhibitor) as well as KN-93(a CaMK-II inhibitor). On the other hand, the first phase of nociceptive behavior induced by formalin s.c. injection was not affected by i.t. KN-93. Our results suggest that pERK and pCaMK-II located at both the spinal cord and supraspinal levels are an important regulator during the nociceptive processes induced by formalin administered s.c. respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2006.06.048DOI Listing

Publication Analysis

Top Keywords

induced formalin
16
protein kinase
12
formalin injection
12
phosphorylated extracellular
8
extracellular signal-regulated
8
signal-regulated protein
8
formalin
8
pain model
8
supraspinal levels
8
perk pcamk-iialpha
8

Similar Publications

Flap endonuclease 1 repairs DNA-protein cross-links via ADP-ribosylation-dependent mechanisms.

Sci Adv

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.

DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.

View Article and Find Full Text PDF

Transgenerational Reproductive and Developmental Toxicity Induced by N-Nitrosodimethylamine and Its Metabolite Formaldehyde in Drosophila melanogaster.

J Appl Toxicol

January 2025

Laboratorio de Genética y Toxicología Ambiental-Banco de Moscas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.

N-Nitrosodimethylamine (NDMA) is a known water disinfection byproduct (DBP) characterized as a potent hepatotoxin, promutagen, and probable human carcinogen; this is because of the metabolites associated with its biotransformation. The metabolism of NDMA produces formaldehyde, another alkylating agent and DBP. Both compounds are generated from natural and anthropogenic sources, but the safety restrictions applied to NDMA do not extend to the uses of formaldehyde.

View Article and Find Full Text PDF

Synergistic Pain-Reducing Effects of (Chronic and Chronic In) and Cannabidiol-Rich Extracts in Experimental Pain Models.

Pharmaceuticals (Basel)

December 2024

Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rod. Josmar Chaves Pinto, km 02-Jardim Marco Zero, Macapá-AP, Macapá 68903-419, AP, Brazil.

The present study aimed to evaluate the potential synergy between pharmaceutical formulations containing L. (granulated-CHR OR and injectable nanodispersion-CHR IN) in conjunction with a cannabidiol (CBD)-rich extract of L. (CSE) on experimental pain models in Wistar rats.

View Article and Find Full Text PDF

Titin gene mutations enhance radiotherapy efficacy via modulation of tumour immune microenvironment in rectum adenocarcinoma.

Clin Transl Med

January 2025

Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center of Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Objective: This study investigates the impact of Titin (TTN) gene mutations on radiotherapy sensitivity in rectum adenocarcinoma (READ) by examining changes in the tumour immune microenvironment.

Methods: Data on gene expression and mutations in READ were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Bioinformatics analysis explored the correlation between TTN mutations and immune cell infiltration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!