A general approach for calculating spectral and optical properties of pigment-protein complexes of known atomic structure is presented. The method, that combines molecular dynamics simulations, quantum chemistry calculations, and statistical mechanical modeling, is demonstrated by calculating the absorption and circular dichroism spectra of the B800-B850 bacteriochlorophylls of the LH2 antenna complex from Rs. molischianum at room temperature. The calculated spectra are found to be in good agreement with the available experimental results. The calculations reveal that the broadening of the B800 band is mainly caused by the interactions with the polar protein environment, while the broadening of the B850 band is due to the excitonic interactions. Since it contains no fitting parameters, in principle, the proposed method can be used to predict optical spectra of arbitrary pigment-protein complexes of known structure.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2210481DOI Listing

Publication Analysis

Top Keywords

spectral optical
8
optical properties
8
lh2 antenna
8
pigment-protein complexes
8
theoretical prediction
4
prediction spectral
4
properties bacteriochlorophylls
4
bacteriochlorophylls thermally
4
thermally disordered
4
disordered lh2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!