We examined the lateral flow strip assay for identifying unauthorized genetically modified (GM) rice. The GM rice expresses the Bacillus thuringiensis (Bt) toxin, CryIAc protein, which confers tolerance to insects. The recombinant CryIAc protein was prepared from the inclusion bodies of an E. coli. strain into which the CryIAc gene had been inserted, using gel filtration chromatography. The lateral flow strip assay for the identification of GM cotton which also expresses CryIAc protein, was applied to unpolished rice and polished rice spiked with recombinant CryIAc protein. The spiked recombinant CryIAc protein was clearly detected at the level of 0.012 microg/g in both the unpolished and polished rice. After loading of the extract on the strip, a 60 -minute stand time is necessary to clearly detect CryIAc protein. The detection limit was approximately 12 ng CryIAc protein per gram of rice. These results suggest that the lateral flow strip assay for GM cotton can be used to detect CryIAc protein expressed in GM rice.

Download full-text PDF

Source
http://dx.doi.org/10.3358/shokueishi.47.111DOI Listing

Publication Analysis

Top Keywords

cryiac protein
36
lateral flow
16
flow strip
16
strip assay
16
recombinant cryiac
12
cryiac
10
protein
9
genetically modified
8
rice
8
modified rice
8

Similar Publications

The expression of insecticidal proteins under constitutive promoters in transgenic plants is fraught with problems like developmental abnormalities, yield drag, expression in unwanted tissues, and seasonal changes in expression. RbPCD1pro, a rapid, early acting wound-inducible promoter from rose that is activated within 5 min of wounding, was isolated and characterized. Wounding increased transcript levels up to 150 and 500 folds within 5 and 20 min coupled with high translation as seen by histochemical GUS enzyme activity within 5-20 min.

View Article and Find Full Text PDF

Elite cotton cultivar Sumian16 was transformed with p7RPSBK-mGNA-NPTII containing Bt (CryIA(c)), Galanthus nivalis agglutinin (GNA) resistance genes, and selectable marker NptII gene via the pollen-tube pathway method, and two fertile transgenic Bt + GNA plants were obtained in the present study. The integration and expression of the Bt and GNA genes were confirmed by molecular biology techniques and insect bioassays. Insect bioassays showed that the transformed plants were highly toxic to bollworm larvae as well as obviously retarding development of aphid populations.

View Article and Find Full Text PDF

Efforts are being made to express toxin genes from the bacterium, Bacillus thuringiensis (Bt) in chickpea for minimizing the losses due to the pod borer, Helicoverpa armigera. However, there is an apprehension that acidic exudates in chickpea leaves may influence the protoxin-toxin conversion in the insect midgut, and thus, reduce the efficacy of Bt toxins. Therefore, we studied the influence of organic acids (oxalic acid and malic acid) present in the trichome exudates of chickpea on the biological activity and binding of Bt δ-endotoxin Cry1Ac to brush border membrane vesicles (BBMV) of the pod borer, H.

View Article and Find Full Text PDF

Development of transgenic CryIA(c) + GNA cotton plants via pollen tube pathway method confers resistance to Helicoverpa armigera and Aphis gossypii Glover.

Methods Mol Biol

April 2013

National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing, PR China.

Elite cotton cultivar Sumian16 was transformed with p7RPSBK-mGNA-NPTII containing Bt (CryIA(c)), Galanthus nivalis agglutinin (GNA) resistance genes and selectable marker NptII gene via the pollen tube pathway method and two fertile transgenic Bt + GNA plants were obtained in the present study. The integration and expression of the Bt and GNA genes were confirmed by molecular biology techniques and insect bioassays. Insect bioassays showed that the transformed plants were highly toxic to bollworm larvae as well as obviously retarding development of aphid populations.

View Article and Find Full Text PDF

Agrobacterium-mediated transformation in chickpea was developed using strain LBA4404 carrying nptII, uidA and cryIAc genes and transformants selected on Murashige and Skoog's basal medium supplemented with benzyladenine, kinetin and kanamycin. Integration of transgenes was demonstrated using polymerase chain reaction and Southern blot hybridization of T0 plants. The expression of CryIAc delta endotoxin and GUS enzyme was shown by enzyme linked immunosorbent assay and histochemical assay respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!