Revenge of the "sit": how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity.

J Neurosci Res

Department of Neurosurgery and Physiological Science and Brain Injury Research Center, UCLA School of Medicine, Los Angeles, California 90095, USA.

Published: September 2006

Exercise, a behavior that is inherently associated with energy metabolism, impacts the molecular systems important for synaptic plasticity and learning and memory. This implies that a close association must exist between these systems to ensure proper neuronal function. This review emphasizes the ability of exercise and other lifestyle implementations that modulate energy metabolism, such as diet, to impact brain function. Mechanisms believed to interface metabolism and cognition seem to play a critical role with the brain derived neurotrophic factor (BDNF) system. Behaviors concerned with activity and metabolism may have developed simultaneously and interdependently during evolution to determine the influence of exercise and diet on cognition. A look into our evolutionary past indicates that our genome remains unchanged from the times of our hunter-gatherer ancestors, whose active lifestyle predominated throughout almost 100% of humankind's existence. Consequently, the sedentary lifestyle and eating behaviors enabled by the comforts of technologic progress may be reaping "revenge" on the health of both our bodies and brains. In the 21st century we are confronted by the ever-increasing incidence of metabolic disorders in both the adult and child population. The ability of exercise and diet to impact systems that promote cell survival and plasticity may be applicable for combating the deleterious effects of disease and ageing on brain health and cognition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.20979DOI Listing

Publication Analysis

Top Keywords

energy metabolism
12
molecular systems
8
ability exercise
8
diet impact
8
exercise diet
8
metabolism
5
revenge "sit"
4
lifestyle
4
"sit" lifestyle
4
lifestyle impacts
4

Similar Publications

Cardiovascular diseases (CVDs) are the leading cause of mortality among individuals with noncommunicable diseases worldwide. Obesity is associated with an increased risk of developing cardiovascular disease (CVD). Mitochondria are integral to the cardiovascular system, and it has been reported that mitochondrial transfer is associated with the pathogenesis of multiple CVDs and obesity.

View Article and Find Full Text PDF

Spatial transcriptomics reveals unique metabolic profile and key oncogenic regulators of cervical squamous cell carcinoma.

J Transl Med

December 2024

Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.

Background: As a prevalent and deadly malignant tumor, the treatment outcomes for late-stage patients with cervical squamous cell carcinoma (CSCC) are often suboptimal. Previous studies have shown that tumor progression is closely related with tumor metabolism and microenvironment reshaping, with disruptions in energy metabolism playing a critical role in this process. To delve deeper into the understanding of CSCC development, our research focused on analyzing the tumor microenvironment and metabolic characteristics across different regions of tumor tissue.

View Article and Find Full Text PDF

DNMT1-driven methylation of RORA facilitates esophageal squamous cell carcinoma progression under hypoxia through SLC2A3.

J Transl Med

December 2024

Department of Thoracic Surgery, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, Henan, 450003, China.

Background: The RAR-related orphan receptor alpha (RORA), a circadian clock molecule, is highly associated with anti-oncogenes. In this paper, we defined the precise action and mechanistic basis of RORA in ESCC development under hypoxia.

Methods: Expression analysis was conducted by RT-qPCR, western blotting, immunofluorescence (IF), and immunohistochemistry (IHC) assays.

View Article and Find Full Text PDF

This manuscript details the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CL, the main protease from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CL is essential for producing the proteins necessary for viral infection, which led to the COVID-19 pandemic. The ITC-based assay provided rapid and reliable measurements of 3CL activity, allowing for the direct derivation of the kinetic enzymatic constants K and k by monitoring the thermal power required to maintain a constant temperature as the substrate is consumed.

View Article and Find Full Text PDF

Objective: To elucidate the association between the changes in intracellular metabolism in the early stage of B cell activation and systemic lupus erythematosus (SLE) pathogenesis.

Methods: CD19 or CD19CD27 (naïve) cells from the peripheral blood of healthy controls and lupus patients were cultured under different stimuli. The changes in intracellular metabolism and signalling pathways in these cells were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!