The N-methyl-D-aspartate (NMDA) receptor subunit NR1 gene can produce eight isoforms in rat brain. A novel methodology for purifying NMDA receptor NR1 subunit from rat brain is reported here using chicken polyclonal antibodies (IgYs) against synthetic peptides corresponding to N1, C1 and C2' cassettes. The isolated protein was recognized by produced IgYs and commercial anti-NR1 IgGs, shown by MALDI-TOF MS a MW = 131,192 Da (glycosylated form); the enzymatically deglycosylated protein revealed a MW = 102,754 Da. The NMDA receptor NR1 subunit was characterized as being a heavily N-glycosylated protein. The isoelectric point was determined (6.3) as being different from that predicted for any of the isoforms (7.9-9.02). Attempts to separate the isoforms from the purified NR1 were unsuccessful, indicating the presence of just one isoform (NR1(111)). Immunohistochemistry on hippocampus regions CA1, CA3 and Dentate gyrus with anti-N1, anti-N2 and anti-C2' IgYs showed different staining intensity, depending upon the antibody assayed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10930-006-0001-9 | DOI Listing |
Anim Cogn
January 2025
Neuroscience Department, Oberlin College, 173 Lorain St, Oberlin, OH, USA.
Keeping track of time intervals is a crucial aspect of behavior and cognition. Many theoretical models of how the brain times behavior make predictions for steady-state performance of well-learned intervals, but the rate of learning intervals in these models varies greatly, ranging from one-shot learning to learning over thousands of trials. Here, we explored how quickly rats and mice adapt to changes in interval durations using a serial fixed-interval task.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland;
Cyclooxygenase-2 (COX-2) is present in a healthy brain at low densities but can be markedly upregulated by excitatory input and by inflammogens. This study evaluated the sensitivity of the PET radioligand [C]-6-methoxy-2-(4-(methylsulfonyl)phenyl)--(thiophen-2-ylmethyl)pyrimidin-4-amine ([C]MC1) to detect COX-2 density in a healthy human brain. The specificity of [C]MC1 was confirmed using lipopolysaccharide-injected rats and transgenic mice expressing the human gene, with 120-min baseline and blocked scans using COX-1 and COX-2 selective agents.
View Article and Find Full Text PDFNeurotoxicology
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt. Electronic address:
Doxorubicin (DOX)-induced chemobrain has been reported in several studies. Its main culprit is the induction of massive amounts of reactive oxygen species (ROS), hence triggering damage to brain tissues and thus leading to neuroinflammation. Biochanin A (BIO-A) is known to be an antioxidant, anti-inflammatory, and neuroprotective agent.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, US.
The opioid crisis, driven by synthetic opioids like fentanyl, demands innovative solutions. The opioid antidote naloxone has a short action ( ~ 1 hour), requiring repeated doses. To address this, we present a new and simple naloxone prodrug delivery system repurposing a hydrophilic derivative of acoramidis, a potent transthyretin ligand.
View Article and Find Full Text PDFBr J Anaesth
January 2025
Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:
Background: Chronic neuropathic pain generally has a poor response to treatment with conventional drugs. Sympathectomy can alleviate neuropathic pain in some patients, suggesting that abnormal sympathetic-somatosensory signaling interactions might underlie some forms of neuropathic pain. The molecular mechanisms underlying sympathetic-somatosensory interactions in neuropathic pain remain obscure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!