We revise the classical Daoud-Cotton (DC) model to describe conformations of polymer and polyelectrolyte chains end-grafted to convex spherical and cylindrical surfaces. In the framework of the DC model, local stretching of chains in the brush does not depend on the degree of polymerization of grafted chains, and the polymer density profile follows a single-exponent power law. This model, however, does not correspond to a minimum in free energy of the curved brush. The nonlocal (NL) approximation exploited in the present paper implies the minimization of the overall free energy of the brush and predicts that the polymer density profile does not follow a single-exponent power law. In the limit of large surface curvature the NL approximation provides the same scaling laws for brush thickness and free energy as the local DC model. Numerical prefactors are however different. Extra extension of chains in the brush interior region leads to larger equilibrium brush thickness and lower free energy per chain. A significant difference between outcomes of the two models is found for brushes formed by ionic polymers, particularly for weakly dissociating (p H-sensitive) polyelectrolytes at low solution salinity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/i2006-10013-5 | DOI Listing |
Sci Rep
January 2025
Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC, 29209, USA.
Accurately predicting the energy consumption plays a vital role in battery electric buses (BEBs) route planning and deployment. Based on the algebraic derivative estimation, we present a novel method to forecast the energy consumption in real time. In contrast to the mainstream machine-learning-based methods, the proposed method does not require access to the historical energy consumption data.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Te-free thermoelectrics have garnered significant interest due to their immense thermoelectric potential and low cost. However, most Te-free thermoelectrics have relatively low performance because of the strong electrical and thermal transport conflicts and unsatisfactory compatibility of interfaces between device materials. Here, we develop lattice defect engineering through Cu doping to realize a record-high figure of merit of ~1.
View Article and Find Full Text PDFNat Commun
January 2025
The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå, Sweden.
The attainment of white emission from a light-emitting electrochemical cell (LEC) is important, since it enables illumination and facile color conversion from devices that can be cost-efficient and sustainable. However, a drawback with current white LECs is that they either employ non-sustainable metals as an emitter constituent or are intrinsically efficiency limited by that the emitter only converts singlet excitons to photons. Organic compounds that emit by thermally activated delayed fluorescence (TADF) can address these issues since they can harvest all excitons for light emission while being metal free.
View Article and Find Full Text PDFISA Trans
January 2025
School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523015, China; School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China. Electronic address:
Excavators, a type of human-operated construction machinery, suffer from poor hydraulic load braking stability, which seriously affects operator comfort. To address this challenge, this study investigates load braking laws through model analysis and designs an open-loop control algorithm called command reshaping, which can prolong the small-opening time of the main valve by segmentally adjusting the joystick command during load braking and then actively adjusting the key parameters reflecting the system's kinetic-potential energy state, thereby suppressing braking oscillations. The experimental results based on a 1.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China.
-Methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors in the central nervous system (CNS), have garnered attention for their role in brain disorders. Specifically, GluN2A-containing NMDA receptors have emerged as a potential therapeutic target for the treatment of depressive disorders and epilepsy. However, the development of GluN2A-containing NMDA receptor-selective antagonists, represented by -(4-(2-benzoylhydrazine-1-carbonyl)benzyl)-3-chloro-4-fluorobenzenesulfonamide (TCN-201) and its derivatives, faces a significant challenge due to their limited ability to penetrate the blood-brain barrier (BBB), hampering their characterization and further advancement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!