AI Article Synopsis

  • The study explores how peritoneal dialysis (PD) triggers a process called epithelial-mesenchymal transition (EMT) in mesothelial cells, leading to fibrosis.
  • Treatment with bone morphogenic protein-7 (BMP-7) is shown to reverse EMT into its opposite process, mesenchymal-epithelial transition (MET).
  • Results indicate that BMP-7 can effectively restore the epithelial characteristics in previously altered mesothelial cells, highlighting its potential as a therapeutic intervention in managing fibrosis during PD.

Article Abstract

Background: During peritoneal dialysis (PD), epithelial-mesenchymal transition (EMT) is likely involved in aberrant healing and progressive peritoneal fibrosis. Recently, EMT of the kidney was actively reversed into the opposite direction, into mesenchymal-epithelial transition (MET), by treatment with bone morphogenic protein-7 (BMP-7). In this study, the potential for ex vivo interconversion of in vivo transdifferentiation processes was investigated in mesothelial cells.

Methods: In vivo EMT was assessed in mesothelial cell cultures randomly grown from peritoneal effluents of seven patients on chronic PD. Then, ex vivo treatment with modulating factors was performed by incubating cobblestone-like cell cultures with transforming growth factor (TGF- beta1) and fibroblast-like cultures with BMP-7. Effects were assessed by morphological characterization, western analysis and reverse transcription-polymerase chain reaction of marker proteins ezrin and alpha-smooth muscle actin (alpha-SMA).

Results: PD caused progressive in vivo EMT with loss of the epithelial phenotype in the majority of mesothelial cell cultures over a 12-month period. EMT was reproducible by ex vivo treatment of cultured cells with TGF-beta1, converting the epithelial to the fibroblast-like phenotype. Ex vivo treatment with BMP-7 reversed in vivo and ex vivo EMT. During rhBMP-7 incubation the fibroblast-like growth pattern reversed into a more epithelial morphology, the expression of ezrin increased and alpha-SMA decreased.

Conclusion: Our study shows that modulating factors of transdifferentiation, such as BMP-7, may be attractive tools in the balance between normal healing and aberrant profibrotic processes in mesothelial cells during peritoneal dialysis. Peritoneal-effluent-derived mesothelial cells are not mere biomarkers for in vivo EMT in the peritoneal cavity, but also represent an assay to test ex vivo interventions to reverse the profibrotic phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfl355DOI Listing

Publication Analysis

Top Keywords

vivo emt
16
vivo
13
mesothelial cells
12
cell cultures
12
vivo treatment
12
vivo transdifferentiation
8
grown peritoneal
8
peritoneal dialysis
8
mesothelial cell
8
modulating factors
8

Similar Publications

Triple-negative breast cancer (TNBC) is a subtype known for its aggressive nature, high rates of recurrence, and treatment resistance, largely attributed to the presence of breast cancer stem cells (BCSCs). Traditional therapies often struggle to eliminate BCSCs, which contributes to tumor recurrence. One promising strategy for addressing this challenge is targeting the Notch signaling pathway, which plays a critical role in the self-renewal and maintenance of BCSCs.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as a super enhancer-associated gene in human PDAC, which encodes the flavin monooxygenase MICAL2 that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin-related transcription factors (MRTF-A and MRTF-B).

View Article and Find Full Text PDF

Raddeanin A (RA) Inhibited EMT and Stemness in Glioblastoma via downregulating Skp2.

J Cancer

January 2025

Cancer Prevention and Treatment Institute of Chengdu, Department of Neurosurgery, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, China.

Glioblastoma (GBM), notorious for its poor prognosis, stands as a formidable challenge within the central nervous system tumor category, primarily due to its intricate pathology that encompasses stemness and the epithelial-mesenchymal transition (EMT). The ubiquity of S phase kinase-associated protein 2 (Skp2) overexpression in GBM, a protein implicated in both EMT and stemness traits, correlates with increased drug resistance, elevated tumor grades, and adverse outcomes. This investigation delves into the impact of Raddeanin A (RA), a triterpenoid compound extracted from Anemone raddeana Regel, on GBM, with a special focus on its influence over Skp2 expression levels.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) can function as either tumor suppressors or oncogenes. This study explores the role of miR-675 in ovarian cancer (OC) using OC cell lines and an orthotopic mouse model. We demonstrate that miR-675 expression inhibits primary tumor growth and metastasis by targeting TGFβ1, suppressing epithelial to mesenchymal transition (EMT), and attenuating the TGFβ signaling pathway.

View Article and Find Full Text PDF

BRAF-activated ARSI suppressed EREG-mediated ferroptosis to promote BRAF (mutant) papillary thyroid carcinoma progression and sorafenib resistance.

Int J Biol Sci

January 2025

Department of Thyroid and Hernia Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou City, Fujian Province 350001, China.

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, and patients with the BRAF mutation often exhibit aggressive tumor behavior. Here, we identified Arylsulfatase I (ARSI) as a gene whose expression was significantly upregulated in BRAF PTC and was associated with poor prognosis. High ARSI expression correlated with advanced disease stage, BRAF mutation, and worse overall survival in PTC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!