Aspergillus fumigatus is an important opportunistic fungal pathogen. The cAMP-dependent protein kinase (PKA) signaling pathway plays an important role in regulating morphology, growth, and virulence in a number of fungal pathogens of plants and animals. We have constructed a mutant of A. fumigatus that lacks the regulatory subunit of PKA, pkaR, and analyzed the growth and development, sensitivity to oxidative damage, and virulence of the mutant, along with those of the wild type and a complemented mutant. Both growth and germination rates of the mutant are reduced, and there are morphological abnormalities in conidiophores, leading to reduced conidiation. Conidia from the DeltapkaR mutant are more sensitive to killing by hydrogen peroxide, menadione, paraquat, and diamide. However, the hyphae of the mutant are killed to a greater extent only by paraquat and diamide, whereas they are less susceptible to the effects of hydrogen peroxide. In an immunosuppressed mouse model, intranasally administered conidia of the mutant are significantly less virulent than those of the wild type or a complemented mutant. Unregulated PKA signaling is detrimental to the virulence of A. fumigatus, perhaps through the reduced susceptibility of the mutant to damage by oxidizing agents and reduced growth kinetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539607PMC
http://dx.doi.org/10.1128/IAI.00565-06DOI Listing

Publication Analysis

Top Keywords

mutant
9
regulatory subunit
8
protein kinase
8
aspergillus fumigatus
8
sensitivity oxidative
8
oxidative damage
8
damage virulence
8
pka signaling
8
wild type
8
type complemented
8

Similar Publications

This study assessed the feasibility of miR17 ~ 92-based antiresorptive strategy by determining the effects of conditional transgenic (cTG) overexpression of miR17 ~ 92 in myeloid cells on bone and osteoclasts. Osteoclasts of male and female cTG mutant mice each showed 3- to fivefold overexpression of miR17 ~ 92 cluster genes compared to those of age- and sex-matched wildtype (WT) littermates. Male but not female cTG mutant mice had more trabecular and cortical bones as well as lower bone resorption reflected by reduction in osteoclast number and resorbing surface.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive neurodegenerative disease resulting from a mutation in the huntingtin (HTT) gene and characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, no disease-modifying treatments are available. Recent research has developed therapeutic agents that may have the potential to directly target the disease pathology, such as gene silencing or clearing the mutant protein.

View Article and Find Full Text PDF

NnNAC100-NnSBEII modules enhance starch content of the rhizome in Nelumbo nucifera Gaertn. Nelumbo nucifera Gaertn. is a popular aquatic vegetable and traditional Chinese medicine whose quality and taste are mainly determined by the starch.

View Article and Find Full Text PDF

Background: The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in non-human species and recently demonstrated to occur in rare instances from one human generation to the next.

Method: Here we investigated numtogenesis dynamics in humans in two ways. First, we quantified Numts in 1,187 post-mortem brain and blood samples from different individuals.

View Article and Find Full Text PDF

Background: Clinicopathological studies of Alzheimer's disease (AD) have demonstrated that synaptic or neuronal loss and clinical cognitive decline do not reliably correlate with fibrillar amyloid burden. We created a transgenic mouse model overexpressing Dutch (E693Q) mutant human amyloid precursor protein (APP) driven by the pan-neuronal Thy1 promoter. Accumulation of APP carboxyl-terminal fragments was observed in the brains of these mice, which develop an impaired learning phenotype directly proportional to brain oAβ levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!