We used Orthogonal Polarization Spectral Imaging to examine the microcirculation of the vaginal mucosa in nine anesthetized patients during two consecutive anesthetic interventions: hypervolemic hemodilution using hydroxyethyl starch followed by thoracic epidural lidocaine. Images taken before and after each intervention were compared. During hypervolemic hemodilution, systolic blood pressures increased significantly, but functional capillary density remained unchanged. Epidural anesthesia decreased systolic and diastolic blood pressures, but there was no change in capillary density, venular diameter, or flow velocity. We concluded that when using Orthogonal Polarization Spectral imaging, no consistent effects on the microcirculation of the vaginal wall can be detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1213/01.ane.0000226108.81213.a3 | DOI Listing |
Entropy (Basel)
January 2025
NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771, USA.
Polarization mode dispersion can introduce quantum decoherence in polarization encoded information, limiting the range of quantum communications protocols. Therefore, strategies to nullify the effect would reduce quantum decoherence and potentially increase the operational range of such technology. We constructed a quantum model of polarization mode dispersion alongside a two-level absorbing material.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
Background: With increasing evidence supporting three-dimensional (3D) automated breast (AB) ultrasound (US) for supplemental screening of breast cancer in increased-risk populations, including those with dense breasts and in limited-resource settings, there is an interest in developing more robust, cost-effective, and high-resolution 3DUS imaging techniques. Compared with specialized ABUS systems, our previously developed point-of-care 3D ABUS system addresses these needs and is compatible with any conventional US transducer, which offers a cost-effective solution and improved availability in clinical practice. While conventional US transducers have high in-plane resolution (axial and lateral), their out-of-plane resolution is constrained by the poor intrinsic elevational US resolution.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Energy decomposition analysis (EDA) based on density functional theory (DFT) and self-consistent field (SCF) calculations has become widely used for understanding intermolecular interactions. This work reports a new approach to EDA for post-SCF wave functions based on closed-shell restricted second-order Mo̷ller-Plesset (MP2) together with an efficient implementation that generalizes the successful SCF-level second-generation absolutely localized molecular orbital EDA approach, ALMO-EDA-II, and improves upon MP2 ALMO-EDA-I. The new MP2 ALMO-EDA-II provides distinct energy contributions for a frozen interaction energy containing permanent electrostatics and Pauli repulsions, polarized energy-yielding induced electrostatics, dispersion-corrected energy, and the fully relaxed energy, which describes charge transfer.
View Article and Find Full Text PDFFront Genet
January 2025
Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China.
Background: Triple-negative breast cancer (TNBC) is a heterogeneous disease with a worse prognosis. Despite ongoing efforts, existing therapeutic approaches show limited success in improving early recurrence and survival outcomes for TNBC patients. Therefore, there is an urgent need to discover novel and targeted therapeutic strategies, particularly those focusing on the immune infiltrate in TNBC, to enhance diagnosis and prognosis for affected individuals.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea.
Magnetization switching by charge current without a magnetic field is essential for device applications and information technology. It generally requires a current-induced out-of-plane spin polarization beyond the capability of conventional ferromagnet/heavy-metal systems, where the current-induced spin polarization aligns in-plane orthogonal to the in-plane charge current and out-of-plane spin current. Here, a new approach is demonstrated for magnetic-field-free switching by fabricating a van-der-Waals magnet and oxide FeGeTe/SrTiO heterostructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!