Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
P300-based GKT (guilty knowledge test) has been suggested as an alternative approach for conventional polygraphy. The purpose of this study is to evaluate three classifying methods for this approach and compare their performances in a lab analogue. Several subjects went through the designed GKT paradigm and their respective brain signals were recorded. For the analysis of signals, BAD (bootstrapped amplitude difference) and BCD (bootstrapped correlation difference) methods as two predefined methods alongside a new approach consisting of wavelet features and a statistical classifier were implemented. The rates of correct detection in guilty and innocent subjects were 74-80%. The results indicate the potential of P300-based GKT for detecting concealed information, although further research is required to increase its accuracy and precision and evaluating its vulnerability to countermeasures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpsycho.2006.05.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!