Suppression of aromatase activity in populations of bream (Abramis brama) from the river Elbe, Germany.

Chemosphere

218c NFST Building, Aquatic Toxicology Laboratory, Department of Zoology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.

Published: January 2007

Aromatase activity was determined in brain and gonads of wild bream collected along the river Elbe, Germany, and correlated with other endocrine and reproductive endpoints such as plasma sex steroid concentrations, secondary sex characteristics (STI), plasma vitellogenin, gonad size (GSI), and maturation stages of germ cells (MS) that were reported for the same fish in a previous study. Furthermore, regional patterns of aromatase activity were correlated to a number of environmental factors such as exposure to environmental contaminants and parasitism. While aromatase activity was not detectable in the gonads of male and female fish with the assay used, fish of both genders revealed relatively great brain enzyme activities. As for most of the endocrine and reproductive parameters, with the exception of plasma testosterone (T), aromatase activities were significantly less in fish from a river stretch characterized by elevated exposures to organic contaminants and metals. Brain aromatase activity was positively and significantly correlated with plasma estradiol (E2) and MS in females, and showed a similar trend with plasma 11-ketotestosterone (11KT) and STI in males. No comparable trend occurred for T. This decrease of the reproductively relevant hormones 11KT and E2 may be indicative of a disruption of the last step in sex hormone synthesis, a hypothesis that was supported for E2 by the strong (R2=0.78, p<0.05) linear regression between aromatase activity and E2 in female bream. It is also hypothesized that the effects on brain aromatase activity were likely to be related to the disruption of other reproductive parameters including sexual maturity and expression of secondary sex characteristics. Although a number of factors such as exposure to pollutants and prevalence of the tapeworm Ligula intestinalis correlated with the suppression of aromatase activity, the exact causes for the regional decrease in brain aromatase activity remain unclear due to inconsistencies of these correlations between sampling events or gender.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2006.05.046DOI Listing

Publication Analysis

Top Keywords

aromatase activity
20
river elbe
8
elbe germany
8
endocrine reproductive
8
activity
5
aromatase
5
plasma
5
suppression aromatase
4
activity populations
4
populations bream
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!