Lateralization of function is a well-known phenomenon in humans. The two hemispheres of the human brain are functionally specialized such that certain cognitive skills, such as language or musical ability, conspecific recognition, and even emotional responses, are mediated by one hemisphere more than the other [1, 2]. Studies over the past 30 years suggest that lateralization occurs in other vertebrate species as well [3-11]. In general, lateralization is observed in different sensory modalities in humans as well as vertebrates, and there are interesting parallels (reviewed in [12]). However, little is known about functional asymmetry in invertebrates [13, 14] and there is only one investigation in insects [15]. Here we show, for the first time, that the honeybee Apis mellifera displays a clear laterality in responding to learned odors. By training honeybees on two different versions of the well-known proboscis extension reflex (PER) paradigm [16, 17], we demonstrate that bees respond to odors better when they are trained through their right antenna. To our knowledge, this is the first demonstration of asymmetrical learning performance in an insect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2006.05.060 | DOI Listing |
Sci Rep
January 2025
Department of Robotics, Hanyang University, Ansan, 15588, Republic of Korea.
Agriculture is an essential component of human sustenance in this world. These days, with a growing population, we must significantly increase agricultural productivity to meet demand. Agriculture moved toward technologies as a result of the demand for higher yields with less resources.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
The ectoparasitic mite Varroa destructor remains a great threat for the beekeeping industry, for example contributing to excessive winter colony loss in Canada. For decades, beekeepers have sequentially used the registered synthetic varroacides tau-fluvalinate, coumaphos, amitraz, and flumethrin, leading to the risk of resistance evolution in the mites. In addition to the widespread resistance to coumaphos and pyrethroids, a decline in amitraz efficacy has recently been reported in numerous beekeeping regions in Canada.
View Article and Find Full Text PDFSci Data
January 2025
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Megachile sculpturalis Smith, 1853 native to East Asia, is an important solitary bee species that has invaded both Europe and the United States. This study provides the first chromosome-level genome assembly of M. sculpturalis using a combination of Nanopore long reads, Illumina short reads, and Hi-C data.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Botany, Rhodes University, Makhanda, 6140, South Africa.
Pollinators are thought to play a key role in driving incipient speciation within the angiosperms. However, the mechanisms underlying floral divergence in plants with generalist pollination systems, remains understudied. Brunsvigia gregaria displays significant geographical variation in floral traits and are visited by diverse pollinator communities.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy.
Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!