Protection against radiation oxidative damage in mice by Triphala.

Mutat Res

Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.

Published: October 2006

Protection against whole body gamma-irradiation (WBI) of Swiss mice orally fed with Triphala (TPL), an Ayurvedic formulation, in terms of mortality of irradiated animals as well as DNA damage at cellular level has been investigated. It was found that radiation induced mortality was reduced by 60% in mice fed with TPL (1g/kg body weight/day) orally for 7 days prior to WBI at 7.5 Gy followed by post-irradiation feeding for 7 days. An increase in xanthine oxidoreductase activity and decrease in superoxide dismutase activity was observed in the intestine of mice exposed to WBI, which, however, reverted back to those levels of sham-irradiated controls, when animals were fed with TPL for 7 days prior to irradiation. These data have suggested the prevention of oxidative damage caused by whole body radiation exposure after feeding of animals with TPL. To further understand the mechanisms involved, the magnitude of DNA damage was studied by single cell gel electrophoresis (SCGE) in blood leukocytes and splenocytes obtained from either control animals or those fed with TPL for 7 days followed by irradiation. Compared to irradiated animals without administering TPL, the mean tail length was reduced about three-fold in blood leukocytes of animals fed with TPL prior to irradiation. Although, similar protection was observed in splenocytes of TPL fed animals, the magnitude of prevention of DNA damage was significantly higher than that observed in leukocytes. It has been concluded that TPL protected whole body irradiated mice and TPL induced protection was mediated through inhibition of oxidative damage in cells and organs. TPL seems to have potential to develop into a novel herbal radio-protector for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2006.05.006DOI Listing

Publication Analysis

Top Keywords

fed tpl
16
oxidative damage
12
dna damage
12
animals fed
12
tpl
11
irradiated animals
8
days prior
8
tpl days
8
prior irradiation
8
blood leukocytes
8

Similar Publications

Multienzyme cascade for synthesis of hydroxytyrosol via engineered Escherichia coli.

Sci Rep

January 2025

Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China.

Hydroxytyrosol, a fine chemical, is widely utilized in food and pharmaceutical industries. In this study, we constructed a pathway to produce hydroxytyrosol by co-expressing tyrosin-phenol lyase (TPL), L-amino acid dehydrogenase (aadL), α-keto acid decarboxylase (KAD), aldehyde reductase (yahK) and glucose dehydrogenase (gdh). We changed combinations between plasmids with different copy numbers and target genes, resulting in 84% increase in hydroxytyrosol production.

View Article and Find Full Text PDF

Tyrosine phenol-lyase inhibitor quercetin reduces fecal phenol levels in mice.

PNAS Nexus

July 2024

Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 4228526, Japan.

Article Synopsis
  • Tyrosine phenol-lyase (TPL) is an enzyme in gut bacteria that produces phenol from L-Tyr, contributing to harmful uremic toxins linked to kidney issues.
  • This study tested how dietary polyphenols, especially quercetin, can inhibit TPL and lower phenol production.
  • Quercetin was found to be the most effective inhibitor of TPL and phenol production, indicating its potential as a treatment strategy for managing uremia despite its low absorption in the gut.
View Article and Find Full Text PDF

Obesity-related glomerulopathy and diabetic nephropathy (DN) are serious complications to metabolic syndrome and diabetes. The purpose was to study effects of a fat, fructose and cholesterol-rich (FFC) diet with and without salt in order to induce hypertension on kidney function and morphology in Göttingen Minipigs with and without diabetes. Male Göttingen Minipigs were divided into 4 groups: SD (standard diet, n = 8), FFC (FFC diet, n = 16), FFC-DIA (FFC diet + diabetes, n = 14), FFC-DIA + S (FFC diet with extra salt + diabetes, n = 14).

View Article and Find Full Text PDF

L-Tyrosine is a versatile compound used in the fine chemical, pharmaceutical, and functional food industries. Here, we report a bi-enzymatic cascade involving alanine racemase (ALR) and D-amino acid oxidase (DAAO) to produce pyruvate, as co-substrate for L-tyrosine production, from the cheap substrate L-alanine. The BpALR (ALR from Bacillus pseudofirmus) was used as a whole-cell biocatalyst, converting L-alanine to D, L-alanine.

View Article and Find Full Text PDF

Purification and Biochemical Characterization of a Tyrosine Phenol-lyase from Morganella morganii.

Appl Biochem Biotechnol

September 2020

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Tyrosine phenol-lyase (TPL) is a valuable and cost-effective biocatalyst for the biosynthesis of L-tyrosine and its derivatives, which are valuable intermediates in the pharmaceutical industry. A TPL from Morganella morganii (Mm-TPL) was overexpressed in Escherichia coli and characterized. Mm-TPL was determined as a homotetramer with molecular weight of 52 kDa per subunit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!